Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 3, Issue 3 | Pages 189 - 195
4 Mar 2022
Atwan Y Sprague S Slobogean GP Bzovsky S Jeray KJ Petrisor B Bhandari M Schemitsch E

Aims. To evaluate the impact of negative pressure wound therapy (NPWT) on the odds of having deep infections and health-related quality of life (HRQoL) following open fractures. Methods. Patients from the Fluid Lavage in Open Fracture Wounds (FLOW) trial with Gustilo-Anderson grade II or III open fractures within the lower limb were included in this secondary analysis. Using mixed effects logistic regression, we assessed the impact of NPWT on deep wound infection requiring surgical intervention within 12 months post-injury. Using multilevel model analyses, we evaluated the impact of NPWT on the Physical Component Summary (PCS) of the 12-Item Short-Form Health Survey (SF-12) at 12 months post-injury. Results. After applying inverse probability treatment weighting to adjust for the influence of injury characteristics on type of dressing used, 1,322 participants were assessed. The odds of developing a deep infection requiring operative management within 12 months of initial surgery was 4.52-times higher in patients who received NPWT compared to those who received a standard wound dressing (95% confidence interval (CI) 1.84 to 11.12; p = 0.001). Overall, 1,040 participants were included in our HRQoL analysis, and those treated with NPWT had statistically significantly lower mean SF-12 PCS post-fracture (p < 0.001). These differences did not reach the minimally important difference for the SF-12 PCS. Conclusion. Our analysis found that patients treated with NPWT had higher odds of developing a deep infection requiring operative management within 12 months post-fracture. Due to possible residual confounding with the worst cases being treated with NPWT, we are unable to determine if NPWT has a negative effect or is simply a marker of worse injuries or poor access to early soft-tissue coverage. Regardless, our results suggest that the use of this treatment requires further evaluation. Cite this article: Bone Jt Open 2022;3(3):189–195


Aims

Ankle fracture fixation is commonly performed by junior trainees. Simulation training using cadavers may shorten the learning curve and result in a technically superior surgical performance.

Methods

We undertook a preliminary, pragmatic, single-blinded, multicentre, randomized controlled trial of cadaveric simulation versus standard training. Primary outcome was fracture reduction on postoperative radiographs.


Bone & Joint Open
Vol. 4, Issue 8 | Pages 602 - 611
21 Aug 2023
James HK Pattison GTR Griffin J Fisher JD Griffin DR

Aims

To evaluate if, for orthopaedic trainees, additional cadaveric simulation training or standard training alone yields superior radiological and clinical outcomes in patients undergoing dynamic hip screw (DHS) fixation or hemiarthroplasty for hip fracture.

Methods

This was a preliminary, pragmatic, multicentre, parallel group randomized controlled trial in nine secondary and tertiary NHS hospitals in England. Researchers were blinded to group allocation. Overall, 40 trainees in the West Midlands were eligible: 33 agreed to take part and were randomized, five withdrew after randomization, 13 were allocated cadaveric training, and 15 were allocated standard training. The intervention was an additional two-day cadaveric simulation course. The control group received standard on-the-job training. Primary outcome was implant position on the postoperative radiograph: tip-apex distance (mm) (DHS) and leg length discrepancy (mm) (hemiarthroplasty). Secondary clinical outcomes were procedure time, length of hospital stay, acute postoperative complication rate, and 12-month mortality. Procedure-specific secondary outcomes were intraoperative radiation dose (for DHS) and postoperative blood transfusion requirement (hemiarthroplasty).