We investigated the effects of low-intensity pulsed ultrasound on distraction osteogenesis in a rabbit model. Callotasis of the right tibia was performed in 70 male Japanese white rabbits using mini-external fixators. In the first part of the study in 64 animals using normal distraction (waiting period seven days; distraction rate 0.5 mm/12 hours; distraction period ten days), we evaluated the distraction site by radiography, measurement of the bone mineral density (BMD), mechanical testing, and histology. In the second part in six rabbits using fast distraction (waiting period 0 days; distraction rate 1.5 mm/12 hours; distraction period seven days) the site was evaluated radiologically. Half of the animals (35) had received ultrasound to their right leg (30mW/cm2) for 20 minutes daily after ceasing distraction (ultrasound group), while rigid fixation only was maintained in the other half (control group). With normal distraction, the hard callus area, as shown by radiography, the BMD, and the findings on mechanical testing, were significantly greater in those receiving ultrasound than in the control group. Histological analysis showed no tissue damage attributable to exposure to ultrasound. With fast distraction, immature bone regeneration was observed radiologically in the control group, while bone maturation was achieved in the ultrasound group. We conclude that ultrasound can accelerate bone maturation in distraction osteogenesis in rabbits, even in states of poor callotasis.