In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular subset of ML, have been adopted by various areas of healthcare. A number of diagnostic and prognostic algorithms have been designed and implemented across a range of orthopaedic sub-specialties to date, with many positive results. However, the methodology of many of these studies is flawed, and few compare the use of ML with the current approach in clinical practice. Spinal surgery has advanced rapidly over the past three decades, particularly in the areas of implant technology, advanced surgical techniques, biologics, and enhanced recovery protocols. It is therefore regarded an innovative field. Inevitably, spinal surgeons will wish to incorporate ML into their practice should models prove effective in diagnostic or prognostic terms. The purpose of this article is to review published studies that describe the application of neural networks to spinal surgery and which actively compare ANN models to contemporary clinical standards allowing evaluation of their efficacy, accuracy, and relatability. It also explores some of the limitations of the technology, which act to constrain the widespread adoption of neural networks for diagnostic and prognostic use in spinal care. Finally, it describes the necessary considerations should institutions wish to incorporate ANNs into their practices. In doing so, the aim of this review is to provide a practical approach for spinal surgeons to understand the relevant aspects of neural networks. Cite this article:
Evaluating musculoskeletal conditions of the lower limb and understanding the pathophysiology of complex bone kinematics is challenging. Static images do not take into account the dynamic component of relative bone motion and muscle activation. Fluoroscopy and dynamic MRI have important limitations. Dynamic CT (4D-CT) is an emerging alternative that combines high spatial and temporal resolution, with an increased availability in clinical practice. 4D-CT allows simultaneous visualization of bone morphology and joint kinematics. This unique combination makes it an ideal tool to evaluate functional disorders of the musculoskeletal system. In the lower limb, 4D-CT has been used to diagnose femoroacetabular impingement, patellofemoral, ankle and subtalar joint instability, or reduced range of motion. 4D-CT has also been used to demonstrate the effect of surgery, mainly on patellar instability. 4D-CT will need further research and validation before it can be widely used in clinical practice. We believe, however, it is here to stay, and will become a reference in the diagnosis of lower limb conditions and the evaluation of treatment options. Cite this article:
Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal. There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced. Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described. The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of robotic spinal surgery. Cite this article:
In 2013, we introduced a specialized, centralized, and interdisciplinary team in our institution that applied a standardized diagnostic and treatment algorithm for the management of prosthetic joint infections (PJIs). The hypothesis for this study was that the outcome of treatment would be improved using this approach. In a retrospective analysis with a standard postoperative follow-up, 95 patients with a PJI of the hip and knee who were treated with a two-stage exchange between 2013 and 2017 formed the study group. A historical cohort of 86 patients treated between 2009 and 2011 not according to the standardized protocol served as a control group. The success of treatment was defined according to the Delphi criteria in a two-year follow-up.Aims
Patients and Methods
The aim of this study was to assess the current evidence relating
to the benefits of virtual reality (VR) simulation in orthopaedic
surgical training, and to identify areas of future research. A literature search using the MEDLINE, Embase, and Google Scholar
databases was performed. The results’ titles, abstracts, and references
were examined for relevance.Aims
Materials and Methods
The diagnosis of periprosthetic joint infection can be difficult
due to the high rate of culture-negative infections. The aim of
this study was to assess the use of next-generation sequencing for
detecting organisms in synovial fluid. In this prospective, single-blinded study, 86 anonymized samples
of synovial fluid were obtained from patients undergoing aspiration
of the hip or knee as part of the investigation of a periprosthetic
infection. A panel of synovial fluid tests, including levels of
C-reactive protein, human neutrophil elastase, total neutrophil
count, alpha-defensin, and culture were performed prior to next-generation
sequencing.Aims
Materials and Methods
The mucopolysaccharidoses (MPS) are a group of
inherited lysosomal storage disorders with clinical manifestations relevant
to the orthopaedic surgeon. Our aim was to review the recent advances
in their management and the implications for surgical practice. The current literature about MPSs is summarised, emphasising
orthopaedic complications and their management. Recent advances in the diagnosis and management of MPSs include
the recognition of slowly progressive, late presenting subtypes,
developments in life-prolonging systemic treatment and potentially
new indications for surgical treatment. The outcomes of surgery
in these patients are not yet validated and some procedures have
a high rate of complications which differ from those in patients
who do not have a MPS. The diagnosis of a MPS should be considered in adolescents or
young adults with a previously unrecognised dysplasia of the hip.
Surgeons treating patients with a MPS should report their experience
and studies should include the assessment of function and quality
of life to guide treatment. Cite this article: