Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 8 | Pages 1214 - 1219
1 Nov 2004
Jafri AA Green SM Partington PF McCaskie AW Muller SD

Fatigue fractures which originate at stress-concentrating voids located at the implant-cement interface are a potential cause of septic loosening of cemented femoral components. Heating of the component to 44°C is known to reduce the porosity of the cement-prosthesis interface.

The temperature of the cement-bone interface was recorded intra-operatively as 32.3°C. A simulated femoral model was devised to study the effect of heating of the component on the implant-cement interface.

Heating of the implant and vacuum mixing have a synergistic effect on the porosity of the implant-cement interface, and heating also reverses the gradients of microhardness in the mantle.

Heating of the implant also reduces porosity at the interface depending on the temperature. A minimum difference in temperature between the implant and the bone of 3°C was required to produce this effect. The optimal difference was 7°C, representing a balance between maximal reduction of porosity and an increased risk of thermal injury. Using contemporary cementing techniques, heating the implant to 40°C is recommended to produce an optimum effect.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 167 - 170
1 Jan 1999
Reading AD McCaskie AW Gregg PJ

Radiological assessment of the cement mantle is used routinely to determine the outcome of total hip replacement. We performed a simulated replacement arthroplasty on cadaver femora and took standard postoperative radiographs. The femora were then sectioned into 7 mm slices starting at the calcar, and high-resolution faxitron radiographs were taken of these sections.

Analysis of the faxitron images showed that defects in the cement mantle were observed up to 100 times more frequently than on the standard films. We therefore encourage the search for a better technique in assessing the cement mantle.