The aim of our study was to investigate the effect of asymmetric crosslinked polyethylene liner use on the risk of revision of cementless and hybrid total hip arthroplasties (THAs). We undertook a registry study combining the National Joint Registry dataset with polyethylene manufacturing characteristics as supplied by the manufacturers. The primary endpoint was revision for any reason. We performed further analyses on other reasons including instability, aseptic loosening, wear, and liner dissociation. The primary analytic approach was Cox proportional hazard regression.Aims
Methods
The aim of this study was to identify the effect of the manufacturing characteristics of polyethylene acetabular liners on the survival of cementless and hybrid total hip arthroplasty (THA). Prospective cohort study using linked National Joint Registry (NJR) and manufacturer data. The primary endpoint was revision for aseptic loosening. Cox proportional hazard regression was the primary analytical approach. Manufacturing variables included resin type, crosslinking radiation dose, terminal sterilization method, terminal sterilization radiation dose, stabilization treatment, total radiation dose, packaging, and face asymmetry. Total radiation dose was further divided into G1 (no radiation), G2 (> 0 Mrad to < 5 Mrad), G3 (≥ 5 Mrad to < 10 Mrad), and G4 (≥ 10 Mrad).Aims
Methods
The computed neck-shaft angle and the size of the femoral component were recorded in 100 consecutive hip resurfacings using imageless computer-navigation and compared with the angle measured before operation and with actual component implanted. The reliability of the registration was further analysed using ten cadaver femora. The mean absolute difference between the measured and navigated neck-shaft angle was 16.3° (0° to 52°). Navigation underestimated the measured neck-shaft angle in 38 patients and the correct implant size in 11. Registration of the cadaver femora tended to overestimate the correct implant size and provided a low level of repeatability in computing the neck-shaft angle. Prudent pre-operative planning is advisable for use in conjunction with imageless navigation since misleading information may be registered intraoperatively, which could lead to inappropriate sizing and positioning of the femoral component in hip resurfacing.
We have investigated the accuracy of placement of the femoral component using imageless navigation in 100 consecutive Birmingham Hip Resurfacings. Pre-operative templating determined the native neck-shaft angle and planned stem-shaft angle of the implant. The latter were verified post-operatively using digital anteroposterior unilateral radiographs of the hip. The mean neck-shaft angle determined before operation was 132.7° (118° to 160°). The mean planned stem-shaft angle was a relative valgus alignment of 9.7° ( Navigation in hip resurfacing may afford the surgeon a reliable and accurate method of placement of the femoral component.