The traditional techniques involving an oblique
tunnel or triangular wedge resection to approach a central or mixed-type
physeal bar are hindered by poor visualisation of the bar. This
may be overcome by a complete transverse osteotomy at the metaphysis
near the growth plate or a direct vertical approach to the bar.
Ilizarov external fixation using small wires allows firm fixation
of the short physis-bearing fragment, and can also correct an associated angular
deformity and permit limb lengthening. We accurately approached and successfully excised ten central-
or mixed-type bars; six in the distal femur, two in the proximal
tibia and two in the distal tibia, without damaging the uninvolved
physis, and corrected the associated angular deformity and leg-length
discrepancy. Callus formation was slightly delayed because of periosteal
elevation and stretching during resection of the bar. The resultant
resection of the bar was satisfactory in seven patients and fair
in three as assessed using a by a modified Williamson–Staheli classification. Cite this article:
Between 2005 and 2010 ten consecutive children
with high-energy open diaphyseal tibial fractures were treated by early
reduction and application of a programmable circular external fixator.
They were all male with a mean age of 11.5 years (5.2 to 15.4),
and they were followed for a mean of 34.5 months (6 to 77). Full
weight-bearing was allowed immediately post-operatively. The mean
time from application to removal of the frame was 16 weeks (12 to
21). The mean deformity following removal of the frame was 0.15°
(0° to 1.5°) of coronal angulation, 0.2° (0° to 2°) sagittal angulation,
1.1 mm (0 to 10) coronal translation, and 0.5 mm (0 to 2) sagittal
translation. All patients achieved consolidated bony union and satisfactory
wound healing. There were no cases of delayed or nonunion, compartment
syndrome or neurovascular injury. Four patients had a mild superficial
pin site infection; all settled with a single course of oral antibiotics.
No patient had a deep infection or re-fracture following removal
of the frame. The time to union was comparable with, or better than,
other published methods of stabilisation for these injuries. The
stable fixator configuration not only facilitates management of
the accompanying soft-tissue injury but enables anatomical post-injury
alignment, which is important in view of the limited remodelling
potential of the tibia in children aged >
ten years. Where appropriate
expertise exists, we recommend this technique for the management
of high-energy open tibial fractures in children.
The results of further soft-tissue release of 79 feet in 60 children with recurrent idiopathic congenital talipes equinovarus were evaluated. The mean age of the children at the time of re-operation was 5.8 years (15 months to 14.5 years). Soft-tissue release was performed in all 79 feet and combined with distal calcaneal excision in 52 feet. The mean follow-up was 12 years (4 to 32). At the latest follow-up the result was excellent or good in 61 feet (77%) according to the Ghanem and Seringe scoring system. The results was considered as fair in 14 feet (18%), all of whom had functional problems and eight had anatomical abnormalities. Four feet (5%) were graded as poor on both functional and anatomical grounds. The results were independent of the age at which revision was undertaken.