Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 403 - 414
1 Apr 2019
Lerch TD Vuilleumier S Schmaranzer F Ziebarth K Steppacher SD Tannast M Siebenrock KA

Aims

The modified Dunn procedure has the potential to restore the anatomy in hips with severe slipped capital femoral epiphyses (SCFE). However, there is a risk of developing avascular necrosis of the femoral head (AVN). In this paper, we report on clinical outcome, radiological outcome, AVN rate and complications, and the cumulative survivorship at long-term follow-up in patients undergoing the modified Dunn procedure for severe SCFE.

Patients and Methods

We performed a retrospective analysis involving 46 hips in 46 patients treated with a modified Dunn procedure for severe SCFE (slip angle > 60°) between 1999 and 2016. At nine-year-follow-up, 40 hips were available for clinical and radiological examination. Mean preoperative age was 13 years, and 14 hips (30%) presented with unstable slips. Mean preoperative slip angle was 64°. Kaplan–Meier survivorship was calculated.


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1424 - 1433
1 Nov 2018
Amstutz HC Le Duff MJ

Aims

This study presents the long-term survivorship, risk factors for prosthesis survival, and an assessment of the long-term effects of changes in surgical technique in a large series of patients treated by metal-on-metal (MoM) hip resurfacing arthroplasty (HRA).

Patients and Methods

Between November 1996 and January 2012, 1074 patients (1321 hips) underwent HRA using the Conserve Plus Hip Resurfacing System. There were 787 men (73%) and 287 women (27%) with a mean age of 51 years (14 to 83). The underlying pathology was osteoarthritis (OA) in 1003 (75.9%), developmental dysplasia of the hip (DDH) in 136 (10.3%), avascular necrosis in 98 (7.4%), and other conditions, including inflammatory arthritis, in 84 (6.4%).


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 16 - 21
1 Jan 2017
Aprato A Leunig M Massé A Slongo T Ganz R

Aims

Several studies have reported the safety and efficacy of subcapital re-alignment for patients with slipped capital femoral epiphysis (SCFE) using surgical dislocation of the hip and an extended retinacular flap. Instability of the hip and dislocation as a consequence of this surgery has only recently gained attention. We discuss this problem with some illustrative cases.

Materials and Methods

We explored the literature on the possible pathophysiological causes and surgical steps associated with the risk of post-operative instability and articular damage. In addition, we describe supplementary steps that could be used to avoid these problems.


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1441 - 1448
1 Nov 2014
Bali K Railton P Kiefer GN Powell JN

We report the clinical and radiological outcome of subcapital osteotomy of the femoral neck in the management of symptomatic femoroacetabular impingement (FAI) resulting from a healed slipped capital femoral epiphysis (SCFE). We believe this is only the second such study in the literature.

We studied eight patients (eight hips) with symptomatic FAI after a moderate to severe healed SCFE. There were six male and two female patients, with a mean age of 17.8 years (13 to 29).

All patients underwent a subcapital intracapsular osteotomy of the femoral neck after surgical hip dislocation and creation of an extended retinacular soft-tissue flap. The mean follow-up was 41 months (20 to 84). Clinical assessment included measurement of range of movement, Harris Hip Score (HHS) and Western Ontario and McMaster Universities Osteoarthritis score (WOMAC). Radiological assessment included pre- and post-operative calculation of the anterior slip angle (ASA) and lateral slip angle (LSA), the anterior offset angle (AOA) and centre head–trochanteric distance (CTD). The mean HHS at final follow-up was 92.5 (85 to 100), and the mean WOMAC scores for pain, stiffness and function were 1.3 (0 to 4), 1.4 (0 to 6) and 3.6 (0 to 19) respectively. There was a statistically significant improvement in all the radiological measurements post-operatively. The mean ASA improved from 36.6° (29° to 44°) to 10.3° (5° to 17°) (p <  0.01). The mean LSA improved from 36.6° (31° to 43°) to 15.4° (8° to 21°) (p < 0.01). The mean AOA decreased from 64.4° (50° to 78°) 32.0° (25° to 39°) post-operatively (p < 0.01). The mean CTD improved from -8.2 mm (-13.8 to +3.1) to +2.8 mm (-7.6 to +11.0) (p < 0.01). Two patients underwent further surgery for nonunion. No patient suffered avascular necrosis of the femoral head.

Subcapital osteotomy for patients with a healed SCFE is more challenging than subcapital re-orientation in those with an acute or sub-acute SCFE and an open physis. An effective correction of the deformity, however, can be achieved with relief of symptoms related to impingement.

Cite this article: Bone Joint J 2014;96-B:1441–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 589 - 594
1 May 2009
Allen D Beaulé PE Ramadan O Doucette S

Femoroacetabular impingement is a cause of hip pain in adults and is potentially a precursor of osteoarthritis. Our aim in this study was to determine the prevalence of bilateral deformity in patients with symptomatic cam-type femoroacetabular impingement as well as the presence of associated acetabular abnormalities and hip pain. We included all patients aged 55 years or less seen by the senior author for hip pain, with at least one anteroposterior and lateral pelvic radiograph available. All patients with dysplasia and/or arthritis were excluded. A total of 113 patients with a symptomatic cam-impingement deformity of at least one hip was evaluated. There were 82 men and 31 women with a mean age of 37.9 years (16 to 55).

Bilateral cam-type deformity was present in 88 patients (77.8%) while only 23 of those (26.1%) had bilateral hip pain. Painful hips had a statistically significant higher mean alpha angle than asymptomatic hips (69.9° vs 63.1°, p < 0.001). Hips with an alpha angle of more than 60° had an odds ratio of being painful of 2.59 (95% confidence interval 1.32 to 5.08, p = 0.006) compared with those with an alpha angle of less than 60°. Of the 201 hips with a cam-impingement deformity 42% (84) also had a pincer deformity.

Most patients with cam-type femoroacetabular impingement had bilateral deformities and there was an associated acetabular deformity in 84 of 201 patients (42%). This information is important in order to define the natural history of these deformities, and to determine treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1592 - 1596
1 Dec 2007
Fraitzl CR Käfer W Nelitz M Reichel H

Conventional treatment of mild slipped capital femoral epiphysis consists of fixation in situ with wires or screws. Recent contributions to the literature suggest that even a mild slip may lead to early damage of the acetabular labrum and adjacent cartilage by abutment of a prominent femoral metaphysis. It has been suggested that the appropriate treatment in mild slipped capital femoral epiphysis should not only prevent further slipping of the epiphysis, but also address potential femoroacetabular impingement by restoring the anatomy of the proximal femur.

Between October 1984 and December 1995 we treated 16 patients for unilateral mild slipped capital femoral epiphysis by fixation in situ with Kirschner wires. In this study we have reviewed these patients for clinical and radiological evidence of femoroacetabular impingement. There was little clinical indication of impingement but radiological evaluation assessing the femoral head-neck ratio and measuring the Nötzli α angle on the anteroposterior and cross-table radiographs showed significant alterations in the proximal femur. None of the affected hips had a normal head-neck ratio and the mean α angle was 86° (55° to 99°) and 55° (40° to 94°) on the anteroposterior and lateral cross-table radiographs, respectively.

While our clinical data favours conventional treatment, our radiological findings are in support of restoring the anatomy of the proximal femur to avoid or delay the development of femoroacetabular impingement following mild slipped capital femoral epiphysis.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1025 - 1030
1 Aug 2007
Ilizaliturri VM Nossa-Barrera JM Acosta-Rodriguez E Camacho-Galindo J

Open reduction of the prominence at the femoral head-neck junction in femoroacetabular impingement has become an established treatment for this condition. We report our experience of arthroscopically-assisted treatment of femoroacetabular impingement secondary to paediatric hip disease in 14 hips in 13 consecutive patients (seven women, six men) with a mean age of 30.6 years (24 to 39) at the time of surgery. The mean follow-up was 2.5 years (2 to 4).

Radiologically, 13 hips had successful restoration of the normal geometry and only one had a residual deformity. The mean increase in the Western Ontario McMasters Osteoarthritis Index for the series at the last follow-up was 9.6 points (4 to 14). No patient developed avascular necrosis or sustained a fracture of the femoral neck or any other complication.

These findings suggest that femoroacetabular impingement associated with paediatric hip disease can be treated safely by arthroscopic techniques.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 769 - 776
1 Jun 2011
Hogervorst T Bouma H de Boer SF de Vos J

We examined the morphology of mammalian hips asking whether evolution can explain the morphology of impingement in human hips. We describe two stereotypical mammalian hips, coxa recta and coxa rotunda. Coxa recta is characterised by a straight or aspherical section on the femoral head or head-neck junction. It is a sturdy hip seen mostly in runners and jumpers. Coxa rotunda has a round femoral head with ample head-neck offset, and is seen mostly in climbers and swimmers.

Hominid evolution offers an explanation for the variants in hip morphology associated with impingement. The evolutionary conflict between upright gait and the birth of a large-brained fetus is expressed in the female pelvis and hip, and can explain pincer impingement in a coxa profunda. In the male hip, evolution can explain cam impingement in coxa recta as an adaptation for running.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 209 - 216
1 Feb 2010
Pollard TCB Villar RN Norton MR Fern ED Williams MR Murray DW Carr AJ

Femoroacetabular impingement causes pain in the hip in young adults and may predispose to the development of osteoarthritis. Genetic factors are important in the aetiology of osteoarthritis of the hip and may have a role in that of femoroacetabular impingement. We compared 96 siblings of 64 patients treated for primary impingement with a spouse control group of 77 individuals. All the subjects were screened clinically and radiologically using a standardised protocol for the presence of cam and pincer deformities and osteoarthritis.

The siblings of those patients with a cam deformity had a relative risk of 2.8 of having the same deformity (66 of 160 siblings hips versus 23 of 154 control hips, p < 0.00001). The siblings of those patients with a pincer deformity had a relative risk of 2.0 of having the same deformity (43 of 116 sibling hips versus 29 of 154 control hips, p = 0.001). Bilateral deformity occurred more often in the siblings (42 of 96 siblings versus 13 of 77 control subjects, relative risk 2.6, p = 0.0002). The prevalence of clinical features in those hips with abnormal morphology was also greater in the sibling group compared with the control group (41 of 109 sibling hips versus 7 of 46 control hips, relative risk 2.5, p = 0.007). In 11 sibling hips there was grade-2 osteoarthritis according to Kellgren and Lawrence versus none in the control group (p = 0.002).

Genetic influences are important in the aetiology of primary femoroacetabular impingement. This risk appears to be manifested through not only abnormal joint morphology, but also through other factors which may modulate progression of the disease.