Advertisement for orthosearch.org.uk
Results 1 - 19 of 19
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 786 - 791
1 Jul 2022
Jenkinson MRJ Peeters W Hutt JRB Witt JD

Aims. Acetabular retroversion is a recognized cause of hip impingement and can be influenced by pelvic tilt (PT), which changes in different functional positions. Positional changes in PT have not previously been studied in patients with acetabular retroversion. Methods. Supine and standing anteroposterior (AP) pelvic radiographs were retrospectively analyzed in 69 patients treated for symptomatic acetabular retroversion. Measurements were made for acetabular index (AI), lateral centre-edge angle (LCEA), crossover index, ischial spine sign, and posterior wall sign. The change in the angle of PT was measured both by the sacro-femoral-pubic (SFP) angle and the pubic symphysis to sacroiliac (PS-SI) index. Results. In the supine position, the mean PT (by SFP) was 1.05° (SD 3.77°), which changed on standing to a PT of 8.64° (SD 5.34°). A significant increase in posterior PT from supine to standing of 7.59° (SD 4.5°; SFP angle) and 5.89° (SD 3.33°; PS-SI index) was calculated (p < 0.001). There was a good correlation in PT change between measurements using SFP angle and PS-SI index (0.901 in the preoperative group and 0.815 in the postoperative group). Signs of retroversion were significantly reduced in standing radiographs compared to supine: crossover index (0.16 (SD 0.16) vs 0.38 (SD 0.15); p < 0.001), crossover sign (19/28 hips vs 28/28 hips; p < 0.001), ischial spine sign (10/28 hips vs 26/28 hips; p < 0.001), and posterior wall sign (12/28 hips vs 24/28 hips; p < 0.001). Conclusion. Posterior PT increased from supine to standing in patients with symptomatic acetabular retroversion. The features of acetabular retroversion were less evident on standing radiographs. The low PT angle in the supine position is a factor in the increased appearance of acetabular retroversion. Patients presenting with symptoms of hip impingement should be assessed by supine and standing pelvic radiographs to highlight signs of acetabular retroversion, and to assist with optimizing acetabular correction at the time of surgery. Cite this article: Bone Joint J 2022;104-B(7):786–791


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1025 - 1031
1 Sep 2022
Thummala AR Xi Y Middleton E Kohli A Chhabra A Wells J

Aims. Pelvic tilt is believed to affect the symptomology of osteoarthritis (OA) of the hip by alterations in joint movement, dysplasia of the hip by modification of acetabular cover, and femoroacetabular impingement by influencing the impingement-free range of motion. While the apparent role of pelvic tilt in hip pathology has been reported, the exact effects of many forms of treatment on pelvic tilt are unknown. The primary aim of this study was to investigate the effects of surgery on pelvic tilt in these three groups of patients. Methods. The demographic, radiological, and outcome data for all patients operated on by the senior author between October 2016 and January 2020 were identified from a prospective registry, and all those who underwent surgery with a primary diagnosis of OA, dysplasia, or femoroacetabular impingement were considered for inclusion. Pelvic tilt was assessed on anteroposterior (AP) standing radiographs using the pre- and postoperative pubic symphysis to sacroiliac joint (PS-SI) distance, and the outcomes were assessed with the Hip Outcome Score (HOS), International Hip Outcome Tool (iHOT-12), and Harris Hip Score (HHS). Results. The linear regression model revealed a significant negative predictive association between the standing pre- and postoperative PS-SI distances for all three groups of patients (all p < 0.001). There was a significant improvement in all three outcome measures between the pre- and postoperative values (p < 0.05). Conclusion. There is a statistically significant decrease in pelvic tilt after surgery in patients with OA of the hip, dysplasia, and femoroacetabular impingement. These results confirm that surgery significantly alters the pelvic orientation. Pelvic tilt significantly decreased after total hip arthroplasty, periacetabular osteotomy, and arthroscopy/surgical hip dislocation. The impact of surgery on pelvic tilt should be considered within the therapeutic plan in order to optimize pelvic orientation in these patients. Cite this article: Bone Joint J 2022;104-B(9):1025–1031


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 47 - 51
1 Jul 2020
Kazarian GS Schloemann DT Barrack TN Lawrie CM Barrack RL

Aims. The aims of this study were to determine the change in the sagittal alignment of the pelvis and the associated impact on acetabular component position at one-year follow-up after total hip arthroplasty (THA). Methods. This study represents the one-year follow-up of a previous short-term study at our institution. Using the patient population from our prior study, the radiological pelvic ratio was assessed in 91 patients undergoing THA, of whom 50 were available for follow-up of at least one year (median 1.5; interquartile range (IQR) 1.1 to 2.0). Anteroposterior radiographs of the pelvis were obtained in the standing position preoperatively and at one year postoperatively. Pelvic ratio was defined as the ratio between the vertical distance from the inferior sacroiliac (SI) joints to the superior pubic symphysis and the horizontal distance between the inferior SI joints. Apparent acetabular component position changes were determined from the change in pelvic ratio. A change of at least 5° was considered clinically meaningful. Results. Pelvic ratio decreased (posterior tilt) in 54.0% (27) of cases, did not change significantly in 34.0% (17) of cases, and increased (anterior tilt) in 12.0% (6) of cases when comparing preoperative to one-year postoperative radiographs. This would correspond with 5° to 10° of abduction error in 22.0% of cases and > 10° of error in 6.0%. Likewise, this would correspond with 5° to 10° of version error in 22.0% of cases and > 10° of error in 44.0%. Conclusion. Pelvic sagittal alignment is dynamic and variable after THA, and these changes persist to the one-year postoperative period, altering the orientation of the acetabular component. Surgeons who individualize the acetabular component placement based on preoperative functional radiographs should consider that the rotation of the pelvis (and thus the component version and inclination) changes one year postoperatively. Cite this article: Bone Joint J 2020;102-B(7 Supple B):47–51


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 45 - 50
1 Jun 2019
Schloemann DT Edelstein AI Barrack RL

Aims. The aims of this study were to determine the change in pelvic sagittal alignment before, during, and after total hip arthroplasty (THA) undertaken with the patient in the lateral decubitus position, and to determine the impact of these changes on acetabular component position. Patients and Methods. We retrospectively compared the radiological pelvic ratio among 91 patients undergoing THA. In total, 41 patients (46%) were female. The mean age was 61.6 years (. sd. 10.7) and the mean body mass index (BMI) was 20.0 kg/m. 2. (. sd. 5.5). Anteroposterior radiographs were obtained: in the standing position preoperatively and at six weeks postoperatively; in the lateral decubitus position after trial reduction intraoperatively; and in the supine position in the post-anaesthesia care unit. Pelvic ratio was defined as the ratio between the vertical distance from the inferior aspect of the sacroiliac (SI) joints to the superior pubic symphysis and the horizontal distance between the inferior aspect of the SI joints. Changes in the apparent component position based on changes in pelvic ratio were determined, with a change of > 5° considered clinically significant. Analyses were performed using Wilcoxon’s signed-rank test, with p < 0.05 considered significant. Results. Intraoperatively, in the lateral decubitus position, the pelvic ratio increased (anterior tilt) in 69.4% of cases, did not change significantly in 20.4%, and decreased (posterior tilt) in 10.2% of cases. When six-week postoperative radiographs were compared with preoperative radiographs, the pelvic ratio decreased in 44.9% of cases, did not change significantly in 42.3%, and increased in 12.8% of cases. This change in alignment correlated with a change in acetabular component version of > 5° in 79.6% of cases intraoperatively and 57.7% of cases at six weeks postoperatively. Conclusion. Changes in pelvic sagittal pelvic position occur throughout THA that, if unaccounted for, introduce errors in acetabular component placement. The use of intraoperative imaging may help the appropriate placement of the acetabular component. Cite this article: Bone Joint J 2019;101-B(6 Supple B):45–50


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 128 - 135
1 Feb 2024
Jenkinson MRJ Cheung TCC Witt J Hutt JRB

Aims

The aim of this study is to evaluate whether acetabular retroversion (AR) represents a structural anatomical abnormality of the pelvis or is a functional phenomenon of pelvic positioning in the sagittal plane, and to what extent the changes that result from patient-specific functional position affect the extent of AR.

Methods

A comparative radiological study of 19 patients (38 hips) with AR were compared with a control group of 30 asymptomatic patients (60 hips). CT scans were corrected for rotation in the axial and coronal planes, and the sagittal plane was then aligned to the anterior pelvic plane. External rotation of the hemipelvis was assessed using the superior iliac wing and inferior iliac wing angles as well as quadrilateral plate angles, and correlated with cranial and central acetabular version. Sagittal anatomical parameters were also measured and correlated to version measurements. In 12 AR patients (24 hips), the axial measurements were repeated after matching sagittal pelvic rotation with standing and supine anteroposterior radiographs.


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 792 - 801
1 Aug 2024
Kleeman-Forsthuber L Kurkis G Madurawe C Jones T Plaskos C Pierrepont JW Dennis DA

Aims

Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age.

Methods

A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements.


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1351 - 1357
1 Aug 2021
Sun J Chhabra A Thakur U Vazquez L Xi Y Wells J

Aims

Some patients presenting with hip pain and instability and underlying acetabular dysplasia (AD) do not experience resolution of symptoms after surgical management. Hip-spine syndrome is a possible underlying cause. We hypothesized that there is a higher frequency of radiological spine anomalies in patients with AD. We also assessed the relationship between radiological severity of AD and frequency of spine anomalies.

Methods

In a retrospective analysis of registry data, 122 hips in 122 patients who presented with hip pain and and a final diagnosis of AD were studied. Two observers analyzed hip and spine variables using standard radiographs to assess AD. The frequency of lumbosacral transitional vertebra (LSTV), along with associated Castellvi grade, pars interarticularis defect, and spinal morphological measurements were recorded and correlated with radiological severity of AD.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1656 - 1661
1 Nov 2021
Iwasa M Ando W Uemura K Hamada H Takao M Sugano N

Aims

Pelvic incidence (PI) is considered an important anatomical parameter for determining the sagittal balance of the spine. The contribution of an abnormal PI to hip osteoarthritis (OA) remains controversial. In this study, we aimed to investigate the relationship between PI and hip OA, and the difference in PI between hip OA without anatomical abnormalities (primary OA) and hip OA with developmental dysplasia of the hip (DDH-OA).

Methods

In this study, 100 patients each of primary OA, DDH-OA, and control subjects with no history of hip disease were included. CT images were used to measure PI, sagittal femoral head coverage, α angle, and acetabular anteversion. PI was also subdivided into three categories: high PI (larger than 64.0°), medium PI (42.0° to 64.0°), and low PI (less than 42.0°). The anterior centre edge angles, posterior centre edge angles, and total sagittal femoral head coverage were measured. The correlations between PI and sagittal femoral head coverage, α angle, and acetabular anteversion were examined.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 872 - 880
1 May 2021
Young PS Macarico DT Silverwood RK Farhan-Alanie OM Mohammed A Periasamy K Nicol A Meek RMD

Aims

Uncemented metal acetabular components show good osseointegration, but material stiffness causes stress shielding and retroacetabular bone loss. Cemented monoblock polyethylene components load more physiologically; however, the cement bone interface can suffer fibrous encapsulation and loosening. It was hypothesized that an uncemented titanium-sintered monoblock polyethylene component may offer the optimum combination of osseointegration and anatomical loading.

Methods

A total of 38 patients were prospectively enrolled and received an uncemented monoblock polyethylene acetabular (pressfit) component. This single cohort was then retrospectively compared with previously reported randomized cohorts of cemented monoblock (cemented) and trabecular metal (trabecular) acetabular implants. The primary outcome measure was periprosthetic bone density using dual-energy x-ray absorptiometry over two years. Secondary outcomes included radiological and clinical analysis.


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1455 - 1462
1 Nov 2018
Munro JT Millar JS Fernandez JW Walker CG Howie DW Shim VB

Aims

Osteolysis, secondary to local and systemic physiological effects, is a major challenge in total hip arthroplasty (THA). While osteolytic defects are commonly observed in long-term follow-up, how such lesions alter the distribution of stress is unclear. The aim of this study was to quantitatively describe the biomechanical implication of such lesions by performing subject-specific finite-element (FE) analysis on patients with osteolysis after THA.

Patients and Methods

A total of 22 hemipelvis FE models were constructed in order to assess the transfer of load in 11 patients with osteolysis around the acetabular component of a THA during slow walking and a fall onto the side. There were nine men and two women. Their mean age was 69 years (55 to 81) at final follow-up. Changes in peak stress values and loads to fracture in the presence of the osteolytic defects were measured.


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 50 - 54
1 Jan 2018
Berend ME Berend KR Lombardi AV Cates H Faris P

Aims

Few reconstructive techniques are available for patients requiring complex acetabular revisions such as those involving Paprosky type 2C, 3A and 3B deficiencies and pelvic discontinuity. Our aim was to describe the development of the patient specific Triflange acetabular component for use in these patients, the surgical technique and mid-term results. We include a description of the pre-operative CT scanning, the construction of a model, operative planning, and surgical technique. All implants were coated with porous plasma spray and hydroxyapatite if desired.

Patients and Methods

A multicentre, retrospective review of 95 complex acetabular reconstructions in 94 patients was performed. A total of 61 (64.2%) were female. The mean age of the patients was 66 (38 to 85). The mean body mass index was 29 kg/m2 (18 to 51). Outcome was reported using the Harris Hip Score (HHS), complications, failures and survival.


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1290 - 1297
1 Oct 2017
Devane PA Horne JG Foley G Stanley J

Aims

This paper describes the methodology, validation and reliability of a new computer-assisted method which uses models of the patient’s bones and the components to measure their migration and polyethylene wear from radiographs after total hip arthroplasty (THA).

Materials and Methods

Models of the patient’s acetabular and femoral component obtained from the manufacturer and models of the patient’s pelvis and femur built from a single computed tomography (CT) scan, are used by a computer program to measure the migration of the components and the penetration of the femoral head from anteroposterior and lateral radiographs taken at follow-up visits. The program simulates the radiographic setup and matches the position and orientation of the models to outlines of the pelvis, the acetabular and femoral component, and femur on radiographs. Changes in position and orientation reflect the migration of the components and the penetration of the femoral head. Validation was performed using radiographs of phantoms simulating known migration and penetration, and the clinical feasibility of measuring migration was assessed in two patients.


The Bone & Joint Journal
Vol. 99-B, Issue 4_Supple_B | Pages 41 - 48
1 Apr 2017
Fernquest S Arnold C Palmer A Broomfield J Denton J Taylor A Glyn-Jones S

Aims

The aim of this study was to examine the real time in vivo kinematics of the hip in patients with cam-type femoroacetabular impingement (FAI).

Patients and Methods

A total of 50 patients (83 hips) underwent 4D dynamic CT scanning of the hip, producing real time osseous models of the pelvis and femur being moved through flexion, adduction, and internal rotation. The location and size of the cam deformity and its relationship to the angle of flexion of the hip and pelvic tilt, and the position of impingement were recorded.


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 24 - 28
1 Jan 2015
Malviya A Dandachli W Beech Z Bankes MJ Witt JD

Stress fractures occurring in the pubis and ischium after peri-acetabular osteotomy (PAO) are not well recognised, with a reported incidence of 2% to 3%. The purpose of this study was to analyse the incidence of stress fracture after Bernese PAO under the care of two high-volume surgeons. The study included 359 patients (48 men, 311 women) operated on at a mean age of 31.1 years (15 to 56), with a mean follow-up of 26 months (6 to 64). Complete follow-up radiographs were available for 348 patients, 64 of whom (18.4%) developed a stress fracture of the inferior pubic ramus, which was noted at a mean of 9.1 weeks (5 to 55) after surgery. Most (58; 91%) healed. In 40 of the patients with a stress fracture (62.5%), pubic nonunion also occurred. Those with a stress fracture were significantly older (mean 33.9 years (16 to 50) vs 30.5 years (15 to 56), p = 0.002) and had significantly more mean pre-operative deformity: mean centre–edge angle (9.8° (-9.5 to 35) vs 12.4° (-33 to 28), p = 0.04) and mean Tönnis angle (22.8° (0 to 45) vs 18.7° (-2 to 38), p < 0.001). The pubic nonunion rate was significantly higher in those with a stress fracture (62.5% vs 7%, p < 0.001), with regression analysis revealing that these patients had 11.8 times higher risk than those without nonunion.

Cite this article: Bone Joint J 2015; 97-B:24–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1033 - 1044
1 Aug 2011
Periasamy K Watson WS Mohammed A Murray H Walker B Patil S Meek RMD

The ideal acetabular component is characterised by reliable, long-term fixation with physiological loading of bone and a low rate of wear. Trabecular metal is a porous construct of tantalum which promotes bony ingrowth, has a modulus of elasticity similar to that of cancellous bone, and should be an excellent material for fixation.

Between 2004 and 2006, 55 patients were randomised to receive either a cemented polyethylene or a monobloc trabecular metal acetabular component with a polyethylene articular surface. We measured the peri-prosthetic bone density around the acetabular components for up to two years using dual-energy x-ray absorptiometry.

We found evidence that the cemented acetabular component loaded the acetabular bone centromedially whereas the trabecular metal monobloc loaded the lateral rim and behaved like a hemispherical rigid metal component with regard to loading of the acetabular bone. We suspect that this was due to the peripheral titanium rim used for the mechanism of insertion.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 3 | Pages 290 - 296
1 Mar 2012
Jayakumar P Ramachandran M Youm T Achan P

Hip arthroscopy is particularly attractive in children as it confers advantages over arthrotomy or open surgery, such as shorter recovery time and earlier return to activity. Developments in surgical technique and arthroscopic instrumentation have enabled extension of arthroscopy of the hip to this age group. Potential challenges in paediatric and adolescent hip arthroscopy include variability in size, normal developmental change from childhood to adolescence, and conditions specific to children and adolescents and their various consequences. Treatable disorders include the sequelae of traumatic and sports-related hip joint injuries, Legg–Calve–Perthes’ disease and slipped capital femoral epiphysis, and the arthritic and septic hip. Intra-articular abnormalities are rarely isolated and are often associated with underlying morphological changes.

This review presents the current concepts of hip arthroscopy in the paediatric and adolescent patient, covering clinical assessment and investigation, indications and results of the experience to date, as well as technical challenges and future directions.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 299 - 305
1 Mar 2008
Kim Y

This study reviewed the results of a cementless anatomical femoral component to give immediate post-operative stability, and with a narrow distal section in order not to contact the femoral cortex in the diaphysis, ensuring exclusively metaphyseal loading.

A total of 471 patients (601 hips) who had a total hip replacement between March 1995 and February 2002 were included in the study. There were 297 men and 174 women. The mean age at the time of operation was 52.7 years (28 to 63). Clinical and radiological evaluation were performed at each follow-up. Bone densitometry was carried out on all patients two weeks after operation and at the final follow-up examination. The mean follow-up was 8.8 years (5 to 12).

The mean pre-operative Harris hip score was 41 points (16 to 54), which improved to a mean of 96 (68 to 100) at the final follow-up. No patient complained of thigh pain at any stage. No acetabular or femoral osteolysis was observed and no hip required revision for aseptic loosening of either component. Deep infection occurred in two hips (0.3%) which required revision. One hip (0.2%) required revision of the acetabular component for recurrent dislocation. Bone mineral densitometry revealed a minimal bone loss in the proximal femur.

This cementless anatomical femoral component with metaphyseal loading but without distal fixation produced satisfactory fixation and encourages proximal femoral loading.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 174 - 179
1 Feb 2007
Kim Y Yoon S Kim J

Our aim in this prospective study was to compare the bone mineral density (BMD) around cementless acetabular and femoral components which were identical in geometry and had the same alumina modular femoral head, but differed in regard to the material of the acetabular liners (alumina ceramic or polyethylene) in 50 patients (100 hips) who had undergone bilateral simultaneous primary total hip replacement. Dual energy X-ray absorptiometry scans of the pelvis and proximal femur were obtained at one week, at one year, and annually thereafter during the five-year period of the study.

At the final follow-up, the mean BMD had increased significantly in each group in acetabular zone I of DeLee and Charnley (20% (15% to 26%), p = 0.003), but had decreased in acetabular zone II (24% (18% to 36%) in the alumina group and 25% (17% to 31%) in the polyethylene group, p = 0.001). There was an increase in the mean BMD in zone III of 2% (0.8% to 3.2%) in the alumina group and 1% (0.6% to 2.2%) in the polyethylene group (p = 0.315). There was a decrease in the mean BMD in the calcar region (femoral zone 7) of 15% (8% to 24%) in the alumina group and 14% (6% to 23%) in the polyethylene group (p < 0.001). The mean bone loss in femoral zone 1 of Gruen et al was 2% (1.1% to 3.1%) in the alumina group and 3% (1.3% to 4.3%) in the polyethylene group (p = 0.03), and in femoral zone 6, the mean bone loss was 15% (9% to 27%) in the alumina group and 14% (11% to 29%) in the polyethylene group compared with baseline values. There was an increase in the mean BMD on the final scans in femoral zones 2 (p = 0.04), 3 (p = 0.04), 4 (p = 0.12) and 5 (p = 0.049) in both groups.

There was thus no significant difference in the bone remodelling of the acetabulum and femur five years after total hip replacement in those two groups where the only difference was in the acetabular liner.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 455 - 459
1 Apr 2006
Shetty NR Hamer AJ Kerry RM Stockley I Eastell R Wilkinson JM

The aims of this study were to examine the repeatability of measurements of bone mineral density (BMD) around a cemented polyethylene Charnley acetabular component using dual-energy x-ray absorptiometry and to determine the longitudinal pattern of change in BMD during the first 24 months after surgery.

The precision of measurements of BMD in 19 subjects ranged from 7.7% to 10.8% between regions, using a four-region-of-interest model. A longitudinal study of 27 patients demonstrated a transient decrease in net pelvic BMD during the first 12 months, which recovered to baseline at 24 months. The BMD in the region medial to the dome of the component reduced by between 7% and 10% during the first three months, but recovered to approximately baseline values by two years.

Changes in BMD in the pelvis around cemented acetabular components may be measured using dual-energy x-ray absorptiometry. Bone loss after insertion of a cemented Charnley acetabular component is small, transient and occurs mainly at the medial wall of the acetabulum. After two years, bone mass returns to baseline values, with a pattern suggesting a uniform transmission of load to the acetabulum.