Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 350 - 358
1 Apr 2004
Karachalios T Lyritis GP Kaloudis J Roidis N Katsiri M

We investigated the effect of calcitonin in the prevention of acute bone loss after a pertrochanteric fracture and its ability to reduce the incidence of further fractures in the same patient. Fifty women aged between 70 and 80 years who had a pertrochanteric fracture of the hip were randomly allocated to group A (200 IU of nasal salmon calcitonin daily for three months) or group B (placebo). Patients in group A showed a significantly higher level of total alkaline phosphatase and osteocalcin on the 15th day after injury and a significantly higher level of bone alkaline phosphatase on the 90th day after surgery. These patients also had significantly lower levels of urinary C-telopeptide (CrossLaps) on the 15th, 45th and 90th days after injury and lower levels of urinary hydroxyproline on the 15th and 45th days after injury. Patients in group A had significantly higher bone mineral density at all recorded sites except the greater trochanter at three months and one year after operation. After a four-year period of clinical observation, five patients (24%) in group B sustained a new fracture, in four of whom (20%) it was of the contralateral hip. Our findings show that calcitonin reduces acute bone loss in patients with pertrochanteric fractures and may prevent the occurrence of new fractures of the contralateral hip in the elderly


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1497 - 1504
1 Sep 2021
Rotman D Ariel G Rojas Lievano J Schermann H Trabelsi N Salai M Yosibash Z Sternheim A

Aims

Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients.

Methods

A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS).