Advertisement for orthosearch.org.uk
Results 1 - 20 of 70
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 258 - 264
1 Feb 2007
Nagura I Fujioka H Kokubu T Makino T Sumi Y Kurosaka M

We developed a new porous scaffold made from a synthetic polymer, poly(DL-lactide-co-glycolide) (PLG), and evaluated its use in the repair of cartilage. Osteochondral defects made on the femoral trochlear of rabbits were treated by transplantation of the PLG scaffold, examined histologically and compared with an untreated control group. Fibrous tissue was initially organised in an arcade array with poor cellularity at the articular surface of the scaffold. The tissue regenerated to cartilage at the articular surface. In the subchondral area, new bone formed and the scaffold was absorbed. The histological scores were significantly higher in the defects treated by the scaffold than in the control group (p < 0.05). Our findings suggest that in an animal model the new porous PLG scaffold is effective for repairing full-thickness osteochondral defects without cultured cells and growth factors


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1110 - 1119
1 Aug 2009
Hepp P Osterhoff G Niederhagen M Marquass B Aigner T Bader A Josten C Schulz R

Perilesional changes of chronic focal osteochondral defects were assessed in the knees of 23 sheep. An osteochondral defect was created in the main load-bearing region of the medial condyle of the knees in a controlled, standardised manner. The perilesional cartilage was evaluated macroscopically and biopsies were taken at the time of production of the defect (T0), during a second operation one month later (T1), and after killing animals at three (T3; n = 8), four (T4; n = 8), and seven (T7; n = 8) months. All the samples were histologically assessed by the International Cartilage Repair Society grading system and Mankin histological scores. Biopsies were taken from human patients (n = 10) with chronic articular cartilage lesions and compared with the ovine specimens. The ovine perilesional cartilage presented with macroscopic and histological signs of degeneration. At T1 the International Cartilage Repair Society ‘Subchondral Bone’ score decreased from a mean of 3.0 (. sd. 0) to a mean of 1.9 (. sd. 0.3) and the ‘Matrix’ score from a mean of 3.0 (. sd. 0) to a mean of 2.5 (. sd. 0.5). This progressed further at T3, with the International Cartilage Repair Society ‘Surface’ grading, the ‘Matrix’ grading, ‘Cell Distribution’ and ‘Cell Viability’ grading further decreasing and the Mankin score rising from a mean of 1.3 (. sd. 1.4) to a mean of 5.1 (. sd. 1.6). Human biopsies achieved Mankin grading of a mean of 4.2 (. sd. 1.6) and were comparable with the ovine histology at T1 and T3. The perilesional cartilage in the animal model became chronic at one month and its histological appearance may be considered comparable with that seen in human osteochondral defects after trauma


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1236 - 1244
1 Sep 2006
Nishimori M Deie M Kanaya A Exham H Adachi N Ochi M

Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined. The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p < 0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 4 | Pages 521 - 526
1 May 2004
Kolker D Murray M Wilson M

We reviewed, retrospectively, 13 patients who had undergone open anterograde autologous bone grafting of the talus for symptomatic osteochondral defects of the dome of the talus. The mean age of the seven men and six women was 38.4 years. The defects included the full thickness of articular cartilage, extended through the subchondral plate and were associated with subchondral cysts. Six patients (46%) were clinical failures requiring further surgery. Of the remaining seven, functional outcome results were obtained at a mean of 51.9 months after surgery. The mean outcome scores for the Musculoskeletal Outcomes Data Evaluation and Management System foot and ankle questionnaire and the American Orthopaedic Foot and Ankle Society ankle-hindfoot scale were 87.0 and 84.3, respectively. There was an overall 46.2% patient satisfaction rate. We believe that the technique of autologous bone grafting presented should be used with extreme caution, when considered as the primary treatment for the adult patient with a symptomatic advanced osteochondral defect of the talus


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 2 | Pages 194 - 204
1 Mar 1995
Takahashi S Oka M Kotoura Y Yamamuro T

We describe a new method of biological repair of osteochondral defects. In rabbit knees an osteochondral defect was reconstructed with a callo-osseous graft made of a superficial sheet of medullary fracture callus attached to a base of cancellous bone. This was taken from the iliac bone of the same animal which had been osteotomised ten days earlier. The reparative tissues were evaluated for 24 weeks by quantitative histology, biochemical analysis of the uronic acid content, and immunohistochemical staining of collagen constituents. The callo-osseous graft provided significantly faster and better repair of the articular surface than an untreated defect or a callo-osseous graft in which the cells had been devitalised by irradiation before transplantation. Our findings indicate that the callo-osseous graft contributes to the repair process by providing both favourable extracellular matrices and pluripotential mesenchymal cells. Our study tested the hypothesis that early medullary callus generates hyaline cartilage instead of bone after transfer to an articular surface


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1650 - 1655
1 Dec 2013
van Bergen CJA van Eekeren ICM Reilingh ML Sierevelt IN van Dijk CN

We have evaluated the clinical effectiveness of a metal resurfacing inlay implant for osteochondral defects of the medial talar dome after failed previous surgical treatment. We prospectively studied 20 consecutive patients with a mean age of 38 years (20 to 60), for a mean of three years (2 to 5) post-surgery. There was statistically significant reduction of pain in each of four situations (i.e., rest, walking, stair climbing and running; p ≤ 0.01). The median American Orthopaedic Foot and Ankle Society ankle-hindfoot score improved from 62 (interquartile range (IQR) 46 to 72) pre-operatively to 87 (IQR 75 to 95) at final follow-up (p < 0.001). The Foot and Ankle Outcome Score improved on all subscales (p ≤ 0.03). The mean Short-Form 36 physical component scale improved from 36 (23 to 50) pre-operatively to 45 (29 to 55) at final follow-up (p = 0.001); the mental component scale did not change significantly. On radiographs, progressive degenerative changes of the opposing tibial plafond were observed in two patients. One patient required additional surgery for the osteochondral defect. This study shows that a metal implant is a promising treatment for osteochondral defects of the medial talar dome after failed previous surgery. Cite this article: Bone Joint J 2013;95-B:1650–5


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 640 - 645
1 May 2005
Bartlett W Skinner JA Gooding CR Carrington RWJ Flanagan AM Briggs TWR Bentley G

Autologous chondrocyte implantation (ACI) is used widely as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum-cover technique include the use of porcine-derived type I/type III collagen as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) using a collagen bilayer seeded with chondrocytes. We have performed a prospective, randomised comparison of ACI-C and MACI for the treatment of symptomatic chondral defects of the knee in 91 patients, of whom 44 received ACI-C and 47 MACI grafts. Both treatments resulted in improvement of the clinical score after one year. The mean modified Cincinnati knee score increased by 17.6 in the ACI-C group and 19.6 in the MACI group (p = 0.32). Arthroscopic assessments performed after one year showed a good to excellent International Cartilage Repair Society score in 79.2% of ACI-C and 66.6% of MACI grafts. Hyaline-like cartilage or hyaline-like cartilage with fibrocartilage was found in the biopsies of 43.9% of the ACI-C and 36.4% of the MACI grafts after one year. The rate of hypertrophy of the graft was 9% (4 of 44) in the ACI-C group and 6% (3 of 47) in the MACI group. The frequency of re-operation was 9% in each group. We conclude that the clinical, arthroscopic and histological outcomes are comparable for both ACI-C and MACI. While MACI is technically attractive, further long-term studies are required before the technique is widely adopted


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 364 - 368
1 Apr 2002
Schuman L Struijs PAA van Dijk CN

We reviewed 38 patients who had been treated for anosteochondral defect of the talus by arthroscopic curettage and drilling. The indication for surgical treatment was persistent symptoms after conservative treatment for at least six months. A total of 22 patients had received primary surgical treatment (primary group) and 16 had had failed previous surgery (revision group). The mean follow-up was 4.8 years (2 to 11). Good or excellent results, as assessed by the Ogilvie-Harris score, were found in 86% in the primary group and in 75% in the revision group. Two further procedures were required, one in each group. Radiological degenerative changes were seen in one ankle in the revision group after ten years. Arthroscopic curettage and drilling are recommended for both primary and revision treatment of an osteochondral defect of the talus


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1099 - 1109
1 Aug 2007
Munirah S Samsudin OC Chen HC Salmah SHS Aminuddin BS Ruszymah BHI

Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous ‘chondrocyte-fibrin’ construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis.

All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage.

Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 4 | Pages 619 - 619
1 May 2004
KISH G HANGODY L


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 223 - 230
1 Mar 2003
Bentley G Biant LC Carrington RWJ Akmal M Goldberg A Williams AM Skinner JA Pringle J

Autologous chondrocyte implantation (ACI) and mosaicplasty are both claimed to be successful for the repair of defects of the articular cartilage of the knee but there has been no comparative study of the two methods. A total of 100 patients with a mean age of 31.3 years (16 to 49) and with a symptomatic lesion of the articular cartilage in the knee which was suitable for cartilage repair was randomised to undergo either ACI or mosaicplasty; 58 patients had ACI and 42 mosaicplasty. Most lesions were post-traumatic and the mean size of the defect was 4.66 cm2. The mean duration of symptoms was 7.2 years and the mean number of previous operations, excluding arthroscopy, was 1.5. The mean follow-up was 19 months (12 to 26).

Functional assessment using the modified Cincinatti and Stanmore scores and objective clinical assessment showed that 88% had excellent or good results after ACI compared with 69% after mosaicplasty. Arthroscopy at one year demonstrated excellent or good repairs in 82% after ACI and in 34% after mosaicplasty. All five patellar mosaicplasties failed.

Our prospective, randomised, clinical trial has shown significant superiority of ACI over mosaicplasty for the repair of articular defects in the knee. The results for ACI are comparable with those in other studies, but those for mosaicplasty suggest that its continued use is of dubious value.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 600 - 606
1 May 2002
Lietman SA Miyamoto S Brown PR Inoue N Reddi AH

Damage to articular cartilage is a common injury, for which there is no effective treatment. Our aims were to investigate the temporal sequence of the repair of articular cartilage and to define a critical-size defect.

Full-thickness defects were made in adult male New Zealand white rabbits. The diameter (1 to 4 mm) of the defects was varied in order to determine the effect that the size and depth of the defect had on its healing. The defects were made in the femoral groove of the knee with one defect per knee and eight knees per group. The tissues were fixed in formalin at days 3, 7, 14, 21, 28, 42, 84 and 126 after operation and the sections stained with Toluidine Blue. These were then examined and evaluated for several parameters including the degree of metachromasia and the amount of subchondral bone which had reformed in the defect.

The defects had a characteristic pattern of healing which differed at different days and for different sizes of defect. Specifically, the defects of 1 mm first peaked in terms of metachromasia at day 21, those of 2 mm at day 28, followed by defects of 3 mm and 4 mm. The healing of the subchondral bone was slowest in defects of 1 mm.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims. Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. Methods. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm. 2. ) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations. Results. No obvious adverse events related to UPAL gel implantation were observed. Self-assessed clinical scores, including pain, symptoms, activities of daily living, sports activity, and quality of life, were improved significantly at three years after surgery. Defect filling was confirmed using second-look arthroscopy at 72 weeks. Significantly improved MRI scores were observed from 12 to 144 weeks postoperatively. Histological examination of biopsy specimens obtained at 72 weeks after implantation revealed an extracellular matrix rich in glycosaminoglycan and type II collagen in the reparative tissue. Histological assessment yielded a mean overall International Cartilage Regeneration & Joint Preservation Society II score of 69.1 points (SD 10.4; 50 to 80). Conclusion. This study provides evidence supporting the safety of acellular UPAL gel implantation in facilitating cartilage repair. Despite being a single-arm study, it demonstrated the efficacy of UPAL gel implantation, suggesting it is an easy-to-use, one-step method of cartilage tissue repair circumventing the need to harvest donor cells. Cite this article: Bone Joint J 2023;105-B(8):880–887


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 330 - 332
1 Mar 2005
Bartlett W Gooding CR Carrington RWJ Skinner JA Briggs TWR Bentley G

Autologous chondrocyte implantation (ACI) is a technique used for the treatment of symptomatic osteochondral defects of the knee. A variation of the original periosteum membrane technique is the matrix-induced autologous chondrocyte implantation (MACI) technique. The MACI membrane consists of a porcine type-I/III collagen bilayer seeded with chondrocytes. Osteochondral defects deeper than 8 to 10 mm usually require bone grafting either before or at the time of transplantation of cartilage. We have used a variation of Peterson’s ACI-periosteum sandwich technique using two MACI membranes with bone graft which avoids periosteal harvesting. The procedure is suture-free and requires less operating time and surgical exposure. We performed this MACI-sandwich technique on eight patients, five of whom were assessed at six months and one year post-operatively using the modified Cincinnati knee, the Stanmore functional rating and the visual analogue pain scores. All patients improved within six months with further improvement at one year. The clinical outcome was good or excellent in four after six months and one year. No significant graft-associated complications were observed. Our early results of the MACI-sandwich technique are encouraging although larger medium-term studies are required before there is widespread adoption of the technique


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 997 - 1006
1 Aug 2009
Gikas PD Bayliss L Bentley G Briggs TWR

Chondral damage to the knee is common and, if left untreated, can proceed to degenerative osteoarthritis. In symptomatic patients established methods of management rely on the formation of fibrocartilage which has poor resistance to shear forces. The formation of hyaline or hyaline-like cartilage may be induced by implanting autologous, cultured chondrocytes into the chondral or osteochondral defect. Autologous chondrocyte implantation may be used for full-thickness chondral or osteochondral injuries which are painful and debilitating with the aim of replacing damaged cartilage with hyaline or hyaline-like cartilage, leading to improved function. The intermediate and long-term functional and clinical results are promising. We provide a review of autologous chondrocyte implantation and describe our experience with the technique at our institution with a mean follow-up of 32 months (1 to 9 years). The procedure is shown to offer statistically significant improvement with advantages over other methods of management of chondral defects


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 61 - 64
1 Jan 2006
Krishnan SP Skinner JA Bartlett W Carrington RWJ Flanagan AM Briggs TWR Bentley G

We investigated the prognostic indicators for collagen-covered autologous chondrocyte implantation (ACI-C) performed for symptomatic osteochondral defects of the knee. We analysed prospectively 199 patients for up to four years after surgery using the modified Cincinnati score. Arthroscopic assessment and biopsy of the neocartilage was also performed whenever possible. The favourable factors for ACI-C include younger patients with higher pre-operative modified Cincinnati scores, a less than two-year history of symptoms, a single defect, a defect on the trochlea or lateral femoral condyle and patients with fewer than two previous procedures on the index knee. Revision ACI-C in patients with previous ACI and mosaicplasties which had failed produced significantly inferior clinical results. Gender (p = 0.20) and the size of the defect (p = 0.97) did not significantly influence the outcome


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 2 | Pages 237 - 244
1 Mar 2002
Gautier E Kolker D Jakob RP

We reviewed retrospectively 11 patients who had been treated surgically by open autologous osteochondral grafting for symptomatic chondral or osteochondral defects of the dome of the talus between 1996 and 1999. The mean ages of the eight men and three women were 34.2 and 25.9 years, respectively, with a mean time to follow-up of 24 months. The results of functional outcome were prospectively obtained using the MODEMS AAOS foot and ankle follow-up questionnaire, the AOFAS ankle-hindfoot scale and the Hannover scores for the ankle. The grafts were harvested from the ipsilateral knee. Good to excellent results were obtained for the ankle without adverse effects on the knee. We believe that autologous osteochondral grafting should be considered for the patient with a symptomatic osteochondral defect of the talus


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 1008 - 1013
1 Nov 1997
Ghazavi MT Pritzker KP Davis AM Gross AE

We used fresh small-fragment osteochondral allografts to reconstruct post-traumatic osteochondral defects in 126 knees of 123 patients with a mean age of 35 years. At a mean follow-up of 7.5 years (2 to 20), 108 knees were rated as successful (85%) and 18 had failed (15%). The factors related to failure included age over 50 years (p = 0.008), bipolar defects (p < 0.05), malaligned knees with overstressing of the grafts, and workers’ compensation cases (p < 0.04). Collapse of the graft by more than 3 mm and of the joint space of more than 50% were seen more frequently in radiographs of failed grafts. Our encouraging clinical results for fresh small-fragment osteochondral allografts show that they are indicated for unipolar post-traumatic osteochondral defects of the knee in young active patients


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 597 - 604
1 May 2008
Selmi TAS Verdonk P Chambat P Dubrana F Potel J Barnouin L Neyret P

Autologous chondrocyte implantation is an established method of treatment for symptomatic articular defects of cartilage. CARTIPATCH is a monolayer-expanded cartilage cell product which is combined with a novel hydrogel to improve cell phenotypic stability and ease of surgical handling. Our aim in this prospective, multicentre study on 17 patients was to investigate the clinical, radiological, arthroscopic and histological outcome at a minimum follow-up of two years after the implantation of autologous chondrocytes embedded in a three-dimensional alginate-agarose hydrogel for the treatment of chondral and osteochondral defects. Clinically, all the patients improved significantly. Patients with lesions larger than 3 cm. 2. improved significantly more than those with smaller lesions. There was no correlation between the clinical outcome and the body mass index, age, duration of symptoms and location of the defects. The mean arthroscopic International Cartilage Repair Society score was 10 (5 to 12) of a maximum of 12. Predominantly hyaline cartilage was seen in eight of the 13 patients (62%) who had follow-up biopsies. Our findings suggest that autologous chondrocyte implantation in combination with a novel hydrogel results in a significant clinical improvement at follow-up at two years, more so for larger and deeper lesions. The surgical procedure is uncomplicated, and predominantly hyaline cartilage-like repair tissue was observed in eight patients


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 54 - 58
1 Jan 2014
Vijayan S Bentley G Rahman J Briggs TWR Skinner JA Carrington RWJ

The management of failed autologous chondrocyte implantation (ACI) and matrix-assisted autologous chondrocyte implantation (MACI) for the treatment of symptomatic osteochondral defects in the knee represents a major challenge. Patients are young, active and usually unsuitable for prosthetic replacement. This study reports the results in patients who underwent revision cartilage transplantation of their original ACI/MACI graft for clinical or graft-related failure. We assessed 22 patients (12 men and 10 women) with a mean age of 37.4 years (18 to 48) at a mean of 5.4 years (1.3 to 10.9). The mean period between primary and revision grafting was 46.1 months (7 to 89). The mean defect size was 446.6 mm. 2. (150 to 875) and they were located on 11 medial and two lateral femoral condyles, eight patellae and one trochlea. . The mean modified Cincinnati knee score improved from 40.5 (16 to 77) pre-operatively to 64.9 (8 to 94) at their most recent review (p < 0.001). The visual analogue pain score improved from 6.1 (3 to 9) to 4.7 (0 to 10) (p = 0.042). A total of 14 patients (63%) reported an ‘excellent’ (n = 6) or ‘good’ (n = 8) clinical outcome, 5 ‘fair’ and one ‘poor’ outcome. Two patients underwent patellofemoral joint replacement. This study demonstrates that revision cartilage transplantation after primary ACI and MACI can yield acceptable functional results and continue to preserve the joint. Cite this article: Bone Joint J 2014;96-B:54–8