Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1022 - 1026
1 Aug 2013
O’Neill SC Queally JM Devitt BM Doran PP O’Byrne JM

Peri-prosthetic osteolysis and subsequent aseptic loosening is the most common reason for revising total hip replacements. Wear particles originating from the prosthetic components interact with multiple cell types in the peri-prosthetic region resulting in an inflammatory process that ultimately leads to peri-prosthetic bone loss. These cells include macrophages, osteoclasts, osteoblasts and fibroblasts. The majority of research in peri-prosthetic osteolysis has concentrated on the role played by osteoclasts and macrophages. The purpose of this review is to assess the role of the osteoblast in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts and contribute to the osteolytic process by two mechanisms. First, particles and metallic ions have been shown to inhibit the osteoblast in terms of its ability to secrete mineralised bone matrix, by reducing calcium deposition, alkaline phosphatase activity and its ability to proliferate. Secondly, particles and metallic ions have been shown to stimulate osteoblasts to produce pro inflammatory mediators in vitro. In vivo, these mediators have the potential to attract pro-inflammatory cells to the peri-prosthetic area and stimulate osteoclasts to absorb bone. Further research is needed to fully define the role of the osteoblast in peri-prosthetic osteolysis and to explore its potential role as a therapeutic target in this condition. Cite this article: Bone Joint J 2013;95-B:1021–5


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 582 - 589
1 May 2015
Brennan SA Ní Fhoghlú C Devitt BM O’Mahony FJ Brabazon D Walsh A

Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications.

Cite this article: Bone Joint J 2015; 97-B:582–9.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 569 - 573
1 May 2014
Sullivan MP McHale KJ Parvizi J Mehta S

Nanotechnology is the study, production and controlled manipulation of materials with a grain size < 100 nm. At this level, the laws of classical mechanics fall away and those of quantum mechanics take over, resulting in unique behaviour of matter in terms of melting point, conductivity and reactivity. Additionally, and likely more significant, as grain size decreases, the ratio of surface area to volume drastically increases, allowing for greater interaction between implants and the surrounding cellular environment. This favourable increase in surface area plays an important role in mesenchymal cell differentiation and ultimately bone–implant interactions.

Basic science and translational research have revealed important potential applications for nanotechnology in orthopaedic surgery, particularly with regard to improving the interaction between implants and host bone. Nanophase materials more closely match the architecture of native trabecular bone, thereby greatly improving the osseo-integration of orthopaedic implants. Nanophase-coated prostheses can also reduce bacterial adhesion more than conventionally surfaced prostheses. Nanophase selenium has shown great promise when used for tumour reconstructions, as has nanophase silver in the management of traumatic wounds. Nanophase silver may significantly improve healing of peripheral nerve injuries, and nanophase gold has powerful anti-inflammatory effects on tendon inflammation.

Considerable advances must be made in our understanding of the potential health risks of production, implantation and wear patterns of nanophase devices before they are approved for clinical use. Their potential, however, is considerable, and is likely to benefit us all in the future.

Cite this article: Bone Joint J 2014; 96-B: 569–73.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1427 - 1432
1 Oct 2012
Chassanidis CG Malizos KN Varitimidis S Samara S Koromila T Kollia P Dailiana Z

Periosteum is important for bone homoeostasis through the release of bone morphogenetic proteins (BMPs) and their effect on osteoprogenitor cells. Smoking has an adverse effect on fracture healing and bone regeneration. The aim of this study was to evaluate the effect of smoking on the expression of the BMPs of human periosteum. Real-time polymerase chain reaction was performed for BMP-2,-4,-6,-7 gene expression in periosteal samples obtained from 45 fractured bones (19 smokers, 26 non-smokers) and 60 non-fractured bones (21 smokers, 39 non-smokers). A hierarchical model of BMP gene expression (BMP-2 > BMP-6 > BMP-4 > BMP-7) was demonstrated in all samples. When smokers and non-smokers were compared, a remarkable reduction in the gene expression of BMP-2, -4 and -6 was noticed in smokers. The comparison of fracture and non-fracture groups demonstrated a higher gene expression of BMP-2, -4 and -7 in the non-fracture samples. Within the subgroups (fracture and non-fracture), BMP gene expression in smokers was either lower but without statistical significance in the majority of BMPs, or similar to that in non-smokers with regard to BMP-4 in fracture and BMP-7 in non-fracture samples. In smokers, BMP gene expression of human periosteum was reduced, demonstrating the effect of smoking at the molecular level by reduction of mRNA transcription of periosteal BMPs. Among the BMPs studied, BMP-2 gene expression was significantly higher, highlighting its role in bone homoeostasis.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 10 - 15
1 Jan 2012
Ollivere B Wimhurst JA M. Clark I Donell ST

The most frequent cause of failure after total hip replacement in all reported arthroplasty registries is peri-prosthetic osteolysis. Osteolysis is an active biological process initiated in response to wear debris. The eventual response to this process is the activation of macrophages and loss of bone.

Activation of macrophages initiates a complex biological cascade resulting in the final common pathway of an increase in osteolytic activity. The biological initiators, mechanisms for and regulation of this process are beginning to be understood. This article explores current concepts in the causes of, and underlying biological mechanism resulting in peri-prosthetic osteolysis, reviewing the current basic science and clinical literature surrounding the topic.


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1162 - 1169
1 Sep 2015
George DA Gant V Haddad FS

The number of arthroplasties being undertaken is expected to grow year on year, and periprosthetic joint infections will be an increasing socioeconomic burden. The challenge to prevent and eradicate these infections has resulted in the emergence of several new strategies, which are discussed in this review.

Cite this article: Bone Joint J 2015;97-B:1162–9.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses.

Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure.

In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future.

Cite this article: Bone Joint J 2014;96-B:291–8.


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 829 - 836
1 Jun 2014
Ferguson JY Dudareva M Riley ND Stubbs D Atkins BL McNally MA

We report our experience using a biodegradable calcium sulphate antibiotic carrier containing tobramycin in the surgical management of patients with chronic osteomyelitis. The patients were reviewed to determine the rate of recurrent infection, the filling of bony defects, and any problems with wound healing. A total of 193 patients (195 cases) with a mean age of 46.1 years (16.1 to 82.0) underwent surgery. According to the Cierny–Mader classification of osteomyelitis there were 12 type I, 1 type II, 144 type III and 38 type IV cases. The mean follow-up was 3.7 years (1.3 to 7.1) with recurrent infection occurring in 18 cases (9.2%) at a mean of 10.3 months post-operatively (1 to 25.0). After further treatment the infection resolved in 191 cases (97.9%). Prolonged wound ooze (longer than two weeks post-operatively) occurred in 30 cases (15.4%) in which there were no recurrent infection. Radiographic assessment at final follow-up showed no filling of the defect with bone in 67 (36.6%), partial filling in 108 (59.0%) and complete filling in eight (4.4%). A fracture occurred in nine (4.6%) of the treated osteomyelitic segments at a mean of 1.9 years (0.4 to 4.9) after operation.

We conclude that Osteoset T is helpful in the management of patients with chronic osteomyelitis, but the filling of the defect in bone is variable. Prolonged wound ooze is usually self-limiting and not associated with recurrent infection.

Cite this article: Bone Joint J 2014; 96-B:829–36


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 141 - 146
1 Nov 2012
Minas T

Hyaline articular cartilage has been known to be a troublesome tissue to repair once damaged. Since the introduction of autologous chondrocyte implantation (ACI) in 1994, a renewed interest in the field of cartilage repair with new repair techniques and the hope for products that are regenerative have blossomed. This article reviews the basic science structure and function of articular cartilage, and techniques that are presently available to effect repair and their expected outcomes.