Aims. The diagnosis of periprosthetic joint infection (PJI) continues to present a significant clinical challenge. New biomarkers have been proposed to support clinical decision-making; among them, synovial fluid alpha-defensin has gained interest. Current research methodology suggests reference methods are needed to establish solid evidence for use of the test. This prospective study aims to evaluate the diagnostic accuracy of high-performance liquid chromatography coupled with the
We investigated the role of ion release in the assessment of fixation of the implant after total knee replacement and hypothesised that ion monitoring could be a useful parameter in the diagnosis of prosthetic loosening. We enrolled 59 patients with unilateral procedures and measured their serum aluminium, titanium, chromium and cobalt ion levels, blinded to the clinical and radiological outcome which was considered to be the reference standard. The cut-off levels for detection of the ions were obtained by measuring the levels in 41 healthy blood donors who had no implants. Based on the clinical and radiological evaluation the patients were divided into two groups with either stable (n = 24) or loosened (n = 35) implants. A significant increase in the mean level of Cr ions was seen in the group with failed implants (p = 0.001). The diagnostic accuracy was 71% providing strong evidence of failure when the level of Cr ions exceeded the cut-off value. The possibility of distinguishing loosening from other causes of failure was demonstrated by the higher diagnostic accuracy of 83%, when considering only patients with failure attributable to loosening. Measurement of the serum level of Cr ions may be of value for detecting failure due to loosening when the diagnosis is in doubt. The other metal ions studies did not have any diagnostic value.
Metallosis is a rare cause of failure after total knee replacement and has only previously been reported when there has been abnormal metal-on-metal contact. We describe 14 patients (15 knees) whose total knee replacement required revision for a new type of early failure caused by extensive metallosis. A modification of a cementless rotating platform implant, which had previously had excellent long-term survival, had been used in each case. The change was in the form of a new porous-beaded surface on the femoral component to induce cementless fixation, which had been used successfully in the fixation of acetabular and tibial components. This modification appeared to have resulted in metallosis due to abrasive two-body wear. The component has subsequently been recalled and is no longer in use. The presentation, investigation, and findings at revision are described and a possible aetiology and its implications are discussed.