header advert
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 293 - 302
1 Mar 2024
Vogt B Lueckingsmeier M Gosheger G Laufer A Toporowski G Antfang C Roedl R Frommer A

Aims. As an alternative to external fixators, intramedullary lengthening nails (ILNs) can be employed for distraction osteogenesis. While previous studies have demonstrated that typical complications of external devices, such as soft-tissue tethering, and pin site infection can be avoided with ILNs, there is a lack of studies that exclusively investigated tibial distraction osteogenesis with motorized ILNs inserted via an antegrade approach. Methods. A total of 58 patients (median age 17 years (interquartile range (IQR) 15 to 21)) treated by unilateral tibial distraction osteogenesis for a median leg length discrepancy of 41 mm (IQR 34 to 53), and nine patients with disproportionate short stature treated by bilateral simultaneous tibial distraction osteogenesis, with magnetically controlled motorized ILNs inserted via an antegrade approach, were retrospectively analyzed. The median follow-up was 37 months (IQR 30 to 51). Outcome measurements were accuracy, precision, reliability, bone healing, complications, and patient-reported outcome assessed by the Limb Deformity-Scoliosis Research Society Score (LD-SRS-30). Results. A median tibial distraction of 44 mm (IQR 31 to 49) was achieved with a mean distraction index of 0.5 mm/day (standard deviation 0.13) and median consolidation index of 41.2 days/cm (IQR 34 to 51). Accuracy, precision, and reliability were 91%, 92%, and 97%, respectively. New temporary range of motion limitations occurred in 51% of segments (34/67). Distraction-related equinus deformity treated by Achilles tendon lengthening was the most common major complication recorded in 16% of segments (11/67). In 95% of patients (55/58) the distraction goal was achieved with 42% unplanned additional interventions per segment (28/67). The median postoperative LD-SRS-30 score was 4.0 (IQR 3.6 to 4.3). Conclusion. Tibial distraction osteogenesis using motorized ILNs inserted via an antegrade approach appears to be a reliable and precise procedure. Temporary joint stiffness of the knee or ankle should be expected in up to every second patient. A high rate and wide range of complications of variable severity should be anticipated. Cite this article: Bone Joint J 2024;106-B(3):293–302


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 88 - 96
1 Jan 2023
Vogt B Rupp C Gosheger G Eveslage M Laufer A Toporowski G Roedl R Frommer A

Aims

Distraction osteogenesis with intramedullary lengthening devices has undergone rapid development in the past decade with implant enhancement. In this first single-centre matched-pair analysis we focus on the comparison of treatment with the PRECICE and STRYDE intramedullary lengthening devices and aim to clarify any clinical and radiological differences.

Methods

A single-centre 2:1 matched-pair retrospective analysis of 42 patients treated with the STRYDE and 82 patients treated with the PRECICE nail between May 2013 and November 2020 was conducted. Clinical and lengthening parameters were compared while focusing radiological assessment on osseous alterations related to the nail’s telescopic junction and locking bolts at four different stages.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 292 - 299
1 Mar 2015
Karthik K Colegate-Stone T Dasgupta P Tavakkolizadeh A Sinha J

The use of robots in orthopaedic surgery is an emerging field that is gaining momentum. It has the potential for significant improvements in surgical planning, accuracy of component implantation and patient safety. Advocates of robot-assisted systems describe better patient outcomes through improved pre-operative planning and enhanced execution of surgery. However, costs, limited availability, a lack of evidence regarding the efficiency and safety of such systems and an absence of long-term high-impact studies have restricted the widespread implementation of these systems. We have reviewed the literature on the efficacy, safety and current understanding of the use of robotics in orthopaedics.

Cite this article: Bone Joint J 2015; 97-B:292–9.