Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.Aims
Methods
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article:
Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient’s functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Eligible studies of THA patients that conducted at least one type of objective functional assessment both pre- and postoperatively were identified through Embase, Medline/PubMed, and Cochrane Central database-searching from inception to 15 September 2023. The assessments included were subgrouped for analysis: gait analysis, motion analysis, wearables, and strength tests.Aims
Methods
The aim of this study was to report the pooled prevalence of post-traumatic osteoarthritis (PTOA) and examine whether the risk of developing PTOA after anterior cruciate ligament (ACL) injury has decreased in recent decades. The PubMed and Web of Science databases were searched from 1 January 1980 to 11 May 2022. Patient series, observational studies, and clinical trials having reported the prevalence of radiologically confirmed PTOA after ACL injury, with at least a ten-year follow-up, were included. All studies were analyzed simultaneously, and separate analyses of the operative and nonoperative knees were performed. The prevalence of PTOA was calculated separately for each study, and pooled prevalence was reported with 95% confidence intervals (CIs) using either a fixed or random effects model. To examine the effect of the year of injury on the prevalence, a logit transformed meta-regression analysis was used with a maximum-likelihood estimator. Results from meta-regression analyses were reported with the unstandardized coefficient (β).Aims
Methods
The aims of this systematic review were to assess the learning curve of semi-active robotic arm-assisted total hip arthroplasty (rTHA), and to compare the accuracy, patient-reported functional outcomes, complications, and survivorship between rTHA and manual total hip arthroplasty (mTHA). Searches of PubMed, Medline, and Google Scholar were performed in April 2020 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “hip”, and “arthroplasty”. The criteria for inclusion were published clinical research articles reporting the learning curve for rTHA (robotic arm-assisted only) and those comparing the implantation accuracy, functional outcomes, survivorship, or complications with mTHA.Aims
Methods
We performed a meta-analysis investigating the association between preoperative psychological distress and postoperative pain and function after total knee arthroplasty (TKA). Pubmed/Medline, Embase, PsycINFO, and the Cochrane library were searched for studies on the influence of preoperative psychological distress on postoperative pain and physical function after TKA. Two blinded reviewers screened for eligibility and assessed the risk of bias and the quality of evidence. We used random effects models to pool data for the meta-analysis.Aims
Materials and Methods
The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). Aims
Materials and Methods