Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 117 - 124
1 Jan 2020
MacDessi SJ Griffiths-Jones W Chen DB Griffiths-Jones S Wood JA Diwan AD Harris IA

Aims. It is unknown whether kinematic alignment (KA) objectively improves knee balance in total knee arthroplasty (TKA), despite this being the biomechanical rationale for its use. This study aimed to determine whether restoring the constitutional alignment using a restrictive KA protocol resulted in better quantitative knee balance than mechanical alignment (MA). Methods. We conducted a randomized superiority trial comparing patients undergoing TKA assigned to KA within a restrictive safe zone or MA. Optimal knee balance was defined as an intercompartmental pressure difference (ICPD) of 15 psi or less using a pressure sensor. The primary endpoint was the mean intraoperative ICPD at 10° of flexion prior to knee balancing. Secondary outcomes included balance at 45° and 90°, requirements for balancing procedures, and presence of tibiofemoral lift-off. Results. A total of 63 patients (70 knees) were randomized to KA and 62 patients (68 knees) to MA. Mean ICPD at 10° flexion in the KA group was 11.7 psi (SD 13.1) compared with 32.0 psi in the MA group (SD 28.9), with a mean difference in ICPD between KA and MA of 20.3 psi (p < 0.001). Mean ICPD in the KA group was significantly lower than in the MA group at 45° and 90°, respectively (25.2 psi MA vs 14.8 psi KA, p = 0.004; 19.1 psi MA vs 11.7 psi KA, p < 0.002, respectively). Overall, participants in the KA group were more likely to achieve optimal knee balance (80% vs 35%; p < 0.001). Bone recuts to achieve knee balance were more likely to be required in the MA group (49% vs 9%; p < 0.001). More participants in the MA group had tibiofemoral lift-off (43% vs 13%; p < 0.001). Conclusion. This study provides persuasive evidence that restoring the constitutional alignment with KA in TKA results in a statistically significant improvement in quantitative knee balance, and further supports this technique as a viable alternative to MA. Cite this article: Bone Joint J. 2020;102-B(1):117–124


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). Methods. A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type. Results. There was similar frequency distribution between healthy and arthritic groups across all CPAK types. The most common categories were Type II (39.2% healthy vs 32.2% OA), Type I (26.4% healthy vs 19.4% OA) and Type V (15.4% healthy vs 14.6% OA). CPAK Types VII, VIII, and IX were rare in both populations. Across all CPAK types, a greater proportion of KA TKAs achieved optimal balance compared to MA. This effect was largest, and statistically significant, in CPAK Types I (100% KA vs 15% MA; p < 0.001), Type II (78% KA vs 46% MA; p = 0.018). and Type IV (89% KA vs 0% MA; p < 0.001). Conclusion. CPAK is a pragmatic, comprehensive classification for coronal knee alignment, based on constitutional alignment and JLO, that can be used in healthy and arthritic knees. CPAK identifies which knee phenotypes may benefit most from KA when optimization of soft tissue balance is prioritized. Further, it will allow for consistency of reporting in future studies. Cite this article: Bone Joint J 2021;103-B(2):329–337


Aims

The aim of this study was to investigate the distribution of phenotypes in Asian patients with end-stage osteoarthritis (OA) and assess whether the phenotype affected the clinical outcome and survival of mechanically aligned total knee arthroplasty (TKA). We also compared the survival of the group in which the phenotype unintentionally remained unchanged with those in which it was corrected to neutral.

Methods

The study involved 945 TKAs, which were performed in 641 patients with primary OA, between January 2000 and January 2009. These were classified into 12 phenotypes based on the combined assessment of four categories of the arithmetic hip-knee-ankle angle and three categories of actual joint line obliquity. The rates of survival were analyzed using Kaplan-Meier methods and the log-rank test. The Hospital for Special Surgery score and survival of each phenotype were compared with those of the reference phenotype with neutral alignment and a parallel joint line. We also compared long-term survival between the unchanged phenotype group and the corrected to neutral alignment-parallel joint line group in patients with Type IV-b (mild to moderate varus alignment-parallel joint line) phenotype.


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1271 - 1278
1 Dec 2023
Rehman Y Korsvold AM Lerdal A Aamodt A

Aims

This study compared patient-reported outcomes of three total knee arthroplasty (TKA) designs from one manufacturer: one cruciate-retaining (CR) design, and two cruciate-sacrificing designs, anterior-stabilized (AS) and posterior-stabilized (PS).

Methods

Patients scheduled for primary TKA were included in a single-centre, prospective, three-armed, blinded randomized trial (n = 216; 72 per group). After intraoperative confirmation of posterior cruciate ligament (PCL) integrity, patients were randomly allocated to receive a CR, AS, or PS design from the same TKA system. Insertion of an AS or PS design required PCL resection. The primary outcome was the mean score of all five subscales of the Knee injury and Osteoarthritis Outcome Score (KOOS) at two-year follow-up. Secondary outcomes included all KOOS subscales, Oxford Knee Score, EuroQol five-dimension health questionnaire, EuroQol visual analogue scale, range of motion (ROM), and willingness to undergo the operation again. Patient satisfaction was also assessed.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 87 - 93
1 Jun 2021
Chalmers BP Elmasry SS Kahlenberg CA Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK Cross MB

Aims

Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture, which leads to femoral joint line elevation. There is a paucity of data describing the effect of joint line elevation on mid-flexion stability and knee kinematics. Thus, the goal of this study was to quantify the effect of joint line elevation on mid-flexion laxity.

Methods

Six computational knee models with cadaver-specific capsular and collateral ligament properties were implanted with a posterior-stabilized (PS) TKA. A 10° flexion contracture was created in each model to simulate a capsular contracture. Distal femoral resections of + 2 mm and + 4 mm were then simulated for each knee. The knee models were then extended under a standard moment. Subsequently, varus and valgus moments of 10 Nm were applied as the knee was flexed from 0° to 90° at baseline and repeated after each of the two distal resections. Coronal laxity (the sum of varus and valgus angulation with respective maximum moments) was measured throughout flexion.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 507 - 514
1 Mar 2021
Chang JS Kayani B Wallace C Haddad FS

Aims

Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology.

Methods

This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°).


The Bone & Joint Journal
Vol. 101-B, Issue 6 | Pages 660 - 666
1 Jun 2019
Chalmers BP Limberg AK Athey AG Perry KI Pagnano MW Abdel MP

Aims. There is little literature about total knee arthroplasty (TKA) after distal femoral osteotomy (DFO). Consequently, the purpose of this study was to analyze the outcomes of TKA after DFO, with particular emphasis on: survivorship free from aseptic loosening, revision, or any re-operation; complications; radiological results; and clinical outcome. Patients and Methods. We retrospectively reviewed 29 patients (17 women, 12 men) from our total joint registry who had undergone 31 cemented TKAs after a DFO between 2000 and 2012. Their mean age at TKA was 51 years (22 to 76) and their mean body mass index 32 kg/m. 2. (20 to 45). The mean time between DFO and TKA was ten years (2 to 20). The mean follow-up from TKA was ten years (2 to 16). The prostheses were posterior-stabilized in 77%, varus-valgus constraint (VVC) in 13%, and cruciate-retaining in 10%. While no patient had metaphyseal fixation (e.g. cones or sleeves), 16% needed a femoral stem. Results. The ten-year survivorship was 95% with aseptic loosening as the endpoint, 88% with revision for any reason as the endpoint, and 81% with re-operation for any reason as the endpoint. Three TKAs were revised for instability (n = 2) and aseptic tibial loosening (n = 1). No femoral component was revised for aseptic loosening. Patients under the age of 50 years were at greater risk of revision for any reason (hazard ratio 7; p = 0.03). There were two additional re-operations (6%) and four complications (13%), including three manipulations under anaesthetic (MUA; 10%). The Knee Society scores improved from a mean of 50 preoperatively (32 to 68) to a mean of 93 postoperatively (76 to 100; p < 0.001). Conclusion. A cemented posterior-stabilized TKA has an 88% ten-year survivorship with revision for any reason as the endpoint. No femoral component was revised for aseptic loosening. Patients under the age of 50 years have a greater risk of revision. The clinical outcome was significantly improved but balancing the knee was challenging in 13% of TKAs requiring VVC. Overall, 10% of TKAs needed an MUA, and 6% of TKAs were revised for instability. Cite this article: Bone Joint J 2019;101-B:660–666


Aims

The objective of this study was to compare early postoperative functional outcomes and time to hospital discharge between conventional jig-based total knee arthroplasty (TKA) and robotic-arm assisted TKA.

Patients and Methods

This prospective cohort study included 40 consecutive patients undergoing conventional jig-based TKA followed by 40 consecutive patients receiving robotic-arm assisted TKA. All surgical procedures were performed by a single surgeon using the medial parapatellar approach with identical implant designs and standardized postoperative inpatient rehabilitation. Inpatient functional outcomes and time to hospital discharge were collected in all study patients.


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1620 - 1624
1 Dec 2016
Pailhé R Cognault J Massfelder J Sharma A Rouchy R Rubens-Duval B Saragaglia D

Aims

The role of high tibial osteotomy (HTO) is being questioned by the use of unicompartmental knee arthroplasty (UKA) in the treatment of medial compartment femorotibial osteoarthritis. Our aim was to compare the outcomes of revision HTO or UKA to a total knee arthroplasty (TKA) using computer-assisted surgery in matched groups of patients.

Patients and Methods

We conducted a retrospective study to compare the clinical and radiological outcome of patients who underwent revision of a HTO to a TKA (group 1) with those who underwent revision of a medial UKA to a TKA (group 2). All revision procedures were performed using computer-assisted surgery. We extracted these groups of patients from our database. They were matched by age, gender, body mass index, follow-up and pre-operative functional score. The outcomes included the Knee Society Scores (KSS), radiological outcomes and the rate of further revision.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 78 - 83
1 Nov 2014
Gustke KA

Total knee replacement (TKR) smart tibial trials have load-bearing sensors which will show quantitative compartment pressure values and femoral-tibial tracking patterns. Without smart trials, surgeons rely on feel and visual estimation of imbalance to determine if the knee is optimally balanced. Corrective soft-tissue releases are performed with minimal feedback as to what and how much should be released. The smart tibial trials demonstrate graphically where and how much imbalance is present, so that incremental releases can be performed. The smart tibial trials now also incorporate accelerometers which demonstrate the axial alignment. This now allows the surgeon the option to perform a slight recut of the tibia or femur to provide soft-tissue balance without performing soft-tissue releases. Using a smart tibial trial to assist with soft-tissue releases or bone re-cuts, improved patient outcomes have been demonstrated at one year in a multicentre study of 135 patients (135 knees).

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):78–83.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 140 - 143
1 Nov 2013
Scott RD

At least four ways have been described to determine femoral component rotation, and three ways to determine tibial component rotation in total knee replacement (TKR). Each method has its advocates and each has an influence on knee kinematics and the ultimate short and long term success of TKR. Of the four femoral component methods, the author prefers rotating the femoral component in flexion to that amount that establishes a stable symmetrical flexion gap. This judgement is made after the soft tissues of the knee have been balanced in extension.

Of the three tibial component methods, the author prefers rotating the tibial component into congruency with the established femoral component rotation with the knee is in extension. This yields a rotationally congruent articulation during weight-bearing and should minimise the torsional forces being transferred through a conforming tibial insert, which could lead to wear to the underside of the tibial polyethylene. Rotating platform components will compensate for any mal-rotation, but can still lead to pain if excessive tibial insert rotation causes soft-tissue impingement.

Cite this article: Bone Joint J 2013;95-B, Supple A:140–3.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 3 | Pages 339 - 343
1 Mar 2012
Sewell MD Hanna SA Al-Khateeb H Miles J Pollock RC Carrington RWJ Skinner JA Cannon SR Briggs TWR

Patients with skeletal dysplasia are prone to developing advanced osteoarthritis of the knee requiring total knee replacement (TKR) at a younger age than the general population. TKR in this unique group of patients is a technically demanding procedure owing to the deformity, flexion contracture, generalised hypotonia and ligamentous laxity. We retrospectively reviewed the outcome of 11 TKRs performed in eight patients with skeletal dysplasia at our institution using the Stanmore Modular Individualised Lower Extremity System (SMILES) custom-made rotating-hinge TKR. There were three men and five women with mean age of 57 years (41 to 79). Patients were followed clinically and radiologically for a mean of seven years (3 to 11.5). The mean Knee Society clinical and function scores improved from 24 (14 to 36) and 20 (5 to 40) pre-operatively, respectively, to 68 (28 to 80) and 50 (22 to 74), respectively, at final follow-up. Four complications were recorded, including a patellar fracture following a fall, a tibial peri-prosthetic fracture, persistent anterior knee pain, and aseptic loosening of a femoral component requiring revision. Our results demonstrate that custom primary rotating-hinge TKR in patients with skeletal dysplasia is effective at relieving pain, with a satisfactory range of movement and improved function. It compensates for bony deformity and ligament deficiency and reduces the likelihood of corrective osteotomy. Patellofemoral joint complications are frequent and functional outcome is worse than with primary TKR in the general population.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 159 - 165
1 Feb 2008
Unitt L Sambatakakis A Johnstone D Briggs TWR

We studied the influence of soft-tissue releases and soft-tissue balance on the outcome of 526 total knee replacements one year after operation. The surgery had been performed by seven surgeons in five centres in the United Kingdom between October 1999 and December 2002. Balancing was carried out by five surgeons using spacers and trials and by two surgeons using a ‘balancer’ instrument. All the surgeons assessed the adequacy of their releases by taking measurements with the balancer after soft-tissue release before implanting the components. Independent observers collected the Oxford knee scores and applied the American Knee Society functional and knee scores as well as recording the range of movement of the replaced knee. These were compared with the pre-operative scores and the extent of the releases.

We found differences in outcomes between minimal and extensive releases and between balanced and imbalanced knees.

Knees requiring extensive soft-tissue releases showed greater change in the short-term clinical outcome without increased complications and achieved similar results at one year compared with those with less deformity pre-operatively which had required less soft-tissue release. Balancing an imbalanced knee improved the short-term knee outcome.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 10 | Pages 1317 - 1323
1 Oct 2007
Kim Y Yoon S Kim J

We compared the results of 146 patients who received an anatomic modular knee fixed-bearing total knee replacement (TKR) in one knee and a low contact stress rotating platform mobile-bearing TKR in the other. There were 138 women and eight men with a mean age of 69.8 years (42 to 80). The mean follow-up was 13.2 years (11.0 to 14.5). The patients were assessed clinically and radiologically using the rating systems of the Hospital for Special Surgery and the Knee Society at three months, six months, one year, and annually thereafter.

The assessment scores of both rating systems pre-operatively and at the final review did not show any statistically significant differences between the two designs of implant. In the anatomic modular knee group, one knee was revised because of aseptic loosening of the tibial component and one because of infection. In addition, three knees were revised because of wear of the polyethylene tibial bearing. In the low contact stress group, two knees were revised because of instability requiring exchange of the polyethylene insert and one because of infection.

The radiological analysis found no statistical difference in the incidence of radiolucent lines at the final review (Student’s t-test, p = 0.08), most of which occurred at tibial zone 1. The Kaplan-Meier survivorship for aseptic loosening of the anatomic modular knee and the low contact stress implants at 14.5 years was 99% and 100%, respectively, with a 95% confidence interval of 94% to 100% for both designs.

We found no evidence of the superiority of one design over the other at long-term follow-up.