Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level. A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB).Aims
Methods
The aim of this study was to analyse the gait
pattern, muscle force and functional outcome of patients who had undergone
replacement of the proximal tibia for tumour and alloplastic reconstruction
of the extensor mechanism using the patellar-loop technique. Between February 1998 and December 2009, we carried out wide
local excision of a primary sarcoma of the proximal tibia, proximal
tibial replacement and reconstruction of the extensor mechanism
using the patellar-loop technique in 18 patients. Of these, nine
were available for evaluation after a mean of 11.6 years (0.5 to
21.6). The strength of the knee extensors was measured using an
Isobex machine and gait analysis was undertaken in our gait assessment
laboratory. Functional outcome was assessed using the American Knee
Society (AKS) and Musculoskeletal Tumor Society (MSTS) scores. The gait pattern of the patients differed in ground contact time,
flexion heel strike, maximal flexion loading response and total
sagittal plane excursion. The mean maximum active flexion was 91°
(30° to 110°). The overall mean extensor lag was 1° (0° to 5°).
The mean extensor muscle strength was 25.8% (8.3% to 90.3%) of that
in the non-operated leg (p <
0.001). The mean functional scores
were 68.7% (43.4% to 83.3%) (MSTS) and 71.1 (30 to 90) (AKS functional
score). In summary, the results show that reconstruction of the extensor
mechanism using this technique gives good biomechanical and functional
results. The patients’ gait pattern is close to normal, except for
a somewhat stiff knee gait pattern. The strength of the extensor
mechanism is reduced, but sufficient for walking. Cite this article:
Patient specific cutting guides generated by
preoperative Magnetic Resonance Imaging (MRI) of the patient’s extremity
have been proposed as a method of improving the consistency of Total
Knee Arthroplasty (TKA) alignment and adding efficiency to the operative
procedure. The cost of this option was evaluated by quantifying the
savings from decreased operative time and instrument processing
costs compared to the additional cost of the MRI and the guide.
Coronal plane alignment was measured in an unselected consecutive
series of 200 TKAs, 100 with standard instrumentation and 100 with
custom cutting guides. While the cutting guides had significantly lower
total operative time and instrument processing time, the estimated
$322 savings was overwhelmed by the $1,500 additional cost of the
MRI and the cutting guide. All measures of coronal plane alignment
were equivalent between the two groups. The data does not currently
support the proposition that patient specific guides add value to
TKA.