We describe a method of reconstruction using tumour-bearing autograft treated by liquid nitrogen in 28 patients. The operative technique consisted of en bloc excision of the tumour, removal of soft tissue, curettage of the tumour, drilling and preparation for internal fixation or prosthetic replacement before incubation for 20 minutes in liquid nitrogen, thawing at room temperature for 15 minutes, thawing in distilled water for ten minutes, and internal fixation with an intramedullary nail, plate or composite use of prosthetic replacement. Bone graft or cement was used to augment
Accurate estimations of the risk of fracture due to metastatic bone disease in the femur is essential in order to avoid both under-treatment and over-treatment of patients with an impending pathological fracture. The purpose of the current retrospective in vivo study was to use CT-based finite element analyses (CTFEA) to identify a clear quantitative differentiating factor between patients who are at imminent risk of fracturing their femur and those who are not, and to identify the exact location of maximal weakness where the fracture is most likely to occur. Data were collected on 82 patients with femoral metastatic bone disease, 41 of whom did not undergo prophylactic fixation. A total of 15 had a pathological fracture within six months following the CT scan, and 26 were fracture-free during the five months following the scan. The Mirels score and strain fold ratio (SFR) based on CTFEA was computed for all patients. A SFR value of 1.48 was used as the threshold for a pathological fracture. The sensitivity, specificity, positive, and negative predicted values for Mirels score and SFR predictions were computed for nine patients who fractured and 24 who did not, as well as a comparison of areas under the receiver operating characteristic curves (AUC of the ROC curves).Aims
Methods
Previously, we showed that case-specific non-linear
finite element (FE) models are better at predicting the load to failure
of metastatic femora than experienced clinicians. In this study
we improved our FE modelling and increased the number of femora
and characteristics of the lesions. We retested the robustness of
the FE predictions and assessed why clinicians have difficulty in
estimating the load to failure of metastatic femora. A total of
20 femora with and without artificial metastases were mechanically
loaded until failure. These experiments were simulated using case-specific
FE models. Six clinicians ranked the femora on load to failure and
reported their ranking strategies. The experimental load to failure
for intact and metastatic femora was well predicted by the FE models (R2 =
0.90 and R2 = 0.93, respectively). Ranking metastatic
femora on load to failure was well performed by the FE models (τ =
0.87), but not by the clinicians (0.11 <
τ <
0.42). Both the
FE models and the clinicians allowed for the characteristics of
the lesions, but only the FE models incorporated the initial bone
strength, which is essential for accurately predicting the risk
of fracture. Accurate prediction of the risk of fracture should
be made possible for clinicians by further developing FE models.
In 1999, we developed a technique for biological
reconstruction after excision of a bone tumour, which involved using
autografts of the bone containing the tumour treated with liquid
nitrogen. We have previously reported the use of this technique
in 28 patients at a mean follow up of 27 months (10 to 54). In this study, we included 72 patients who underwent reconstruction
using this technique. A total of 33 patients died and three were
lost to follow-up, at a mean of 23 months (2 to 56) post-operatively,
leaving 36 patients available for a assessment at a mean of 101
months 16 to 163) post-operatively. The methods of reconstruction included
an osteo-articular graft in 16, an intercalary in 13 and, a composite
graft with prosthesis in seven. Post-operative function was excellent in 26 patients (72.2%),
good in seven (19.4%), and fair in three (8.3%) according to the
functional evaluation system of Enneking. No recurrent tumour occurred
within the grafts. The autografts survived in 29 patients (80.6%),
and the rates of survival at five and ten years were 86.1% and 80.6
%, respectively. Seven of 16 osteo-articular grafts (44%) failed
because of fracture or infection, but all the composite and intercalary
grafts survived. The long-term outcomes of frozen autografting, particularly using
composite and intercalary grafts, are satisfactory and thus represent
a good method of treatment for patients with a sarcoma of bone or
soft tissue. Cite this article:
We review the treatment of pelvic Ewing’s sarcoma by the implantation of extracorporeally-irradiated (ECI) autografts and compare the outcome with that of other reported methods. We treated 13 patients with ECI autografts between 1994 and 2004. There were seven males and six females with a median age of 15.7 years (interquartile range (IQR) 12.2 to 21.7). At a median follow-up of five years (IQR 1.8 to 7.4), the disease-free survival was 69% overall, and 75% if one patient with local recurrence after initial treatment elsewhere was excluded. Four patients died from distant metastases at a mean of 17 months (13 to 23). There were three complications which required operative intervention; one was a deep infection which required removal of the graft. The functional results gave a mean Musculoskeletal Tumor Society score of 85% (60% to 97%), a mean Toronto extremity salvage score of 86% (69% to 100%) and a mean Harris hip score of 92 (67 to 100). We conclude that ECI grafting is a suitable form of treatment for localised and resectable pelvic Ewing’s sarcoma.