We used immediate post-operative in vivo three-dimensional
computed tomography to compare graft bending angles and femoral
tunnel lengths in 155 patients who had undergone single-bundle reconstruction
of the anterior cruciate ligament using the
Anterior cruciate ligament (ACL) reconstruction
is commonly performed and has been for many years. Despite this, the
technical details related to ACL anatomy, such as tunnel placement,
are still a topic for debate. In this paper, we introduce the flat
ribbon concept of the anatomy of the ACL, and its relevance to clinical
practice. Cite this article:
Graft-tunnel mismatch of the bone-patellar tendon-bone
(BPTB) graft is a major concern during anatomical anterior cruciate
ligament (ACL) reconstruction if the femoral tunnel is positioned
using a far medial portal technique, as the femoral tunnel tends
to be shorter compared with that positioned using a transtibial
portal technique. This study describes an accurate method of calculating
the ideal length of bone plugs of a BPTB graft required to avoid
graft–tunnel mismatch during anatomical ACL reconstruction using
a far medial portal technique of femoral tunnel positioning. Based on data obtained intra-operatively from 60 anatomical ACL
reconstruction procedures, we calculated the length of bone plugs
required in the BPTB graft to avoid graft–tunnel mismatch. When
this was prevented in all the 60 cases, we found that the mean length
of femoral bone plug that remained in contact with the interference
screw within the femoral tunnel was 14 mm (12 to 22) and the mean
length of tibial bone plug that remained in contact with the interference
screw within the tibial tunnel was 23 mm (18 to 28). These results
were used to validate theoretical formulae developed to predict
the required length of bone plugs in BPTB graft during anatomical
ACL reconstruction using a far medial portal technique. Cite this article:
A total of 218 patients with unilateral anterior cruciate ligament deficiency were randomly assigned to one of four groups. In group A an anatomical double bundle anterior cruciate ligament reconstruction was performed; group B were treated by a single bundle using an Endobutton for femoral fixation; in group C by a single bundle using RigidFix cross pins for femoral fixation; and in group D by a single bundle using a bioabsorbable TransFix II screw for femoral fixation. For tibial fixation a bioabsorbable Intrafix interference screw was used for all the groups and the graft was fashioned from the semitendinosus and gracilis tendons in all patients. In all, 18 patients were lost to follow-up. The remaining 200 were subjected to a clinical evaluation, with assessment of the anterior drawer, Lachman’s and the pivot-shift tests, and KT-1000 arthrometer measurement. They also completed the International Knee Documentation Committee, Lysholm knee and Tegner activity scores. At a mean of 29 months (25 to 38) follow-up there were no significant differences concerning time between injury and range of movement and Lysholm knee scores among the four groups. However, the double bundle method showed significantly better results for the pivot-shift test (p = 0.002). The KT 1000 measurements showed a mean difference between the reconstructed knee and the patients’ normal knee of 1.4 mm in the double bundle group and 2.4 mm in the single bundle group; which was statistically significant. The Lachman and anterior drawer tests also showed superior results for the double bundle method. The International Knee Documentation Committee scale showed no significant difference among the groups (p <
0.001). On clinical evaluation the double bundle group showed less laxity than the single bundle groups. However, regardless of the technique, all knees were improved by anterior cruciate ligament reconstruction compared with their pre-operative status.
Animal studies have shown that implanted anterior cruciate ligament (ACL) grafts initially undergo a process of revascularisation prior to remodelling, ultimately increasing mechanical strength. We investigated whether minimal debridement of the intercondylar notch and the residual stump of the ruptured ACL leads to earlier revascularisation in ACL reconstruction in humans. We undertook a randomised controlled clinical trial in which 49 patients underwent ACL reconstruction using autologous four-strand hamstring tendon grafts. Randomised by the use of sealed envelopes, 25 patients had a conventional clearance of the intercondylar notch and 24 had a minimal debridement method. Three patients were excluded from the study. All patients underwent MR scanning postoperatively at 2, 6 and 12 months, together with clinical assessment using a KT-1000 arthrometer and International Knee Documentation Committee (IKDC) evaluation. All observations were made by investigators blinded to the surgical technique. Signal intensity was measured in 4 mm diameter regions of interest along the ACL graft and the mid-substance of the posterior cruciate ligament. Our results indicate that minimal debridement leads to earlier revascularisation within the mid-substance of the ACL graft at two months (paired
Delayed rather than early reconstruction of the anterior cruciate ligament is the current recommended treatment for injury to this ligament since it is thought to give a better functional outcome. We randomised 105 consecutive patients with injury associated with chondral lesions no more severe than grades 1 and 2 and/or meniscal tears which only required trimming, to early (<
two weeks) or delayed (>
four to six weeks) reconstruction of the anterior cruciate ligament using a quadrupled hamstring graft. All operations were performed by a single surgeon and a standard rehabilitation regime was followed in both groups. The outcomes were assessed using the Lysholm score, the Tegner score and measurement of the range of movement. Stability was assessed by clinical tests and measurements taken with the KT-1000 arthrometer, with all testing performed by a blinded uninvolved experienced observer. A total of six patients were lost to follow-up, with 48 patients assigned to the delayed group and 51 to the early group. None was a competitive athlete. The mean interval between injury and the surgery was seven days (2 to 14) in the early group and 32 days (29 to 42) in the delayed group. The mean follow-up was 32 months (26 to 36). The results did not show a statistically significant difference for the Lysholm score (p = 0.86), Tegner activity score (p = 0.913) or the range of movement (p = 1). Similarly, no distinction could be made for stability testing by clinical examination (p = 0.56) and measurements with the KT-1000 arthrometer (p = 0.93). Reconstruction of the anterior cruciate ligament gave a similar clinical and functional outcome whether performed early (<
two weeks) or late at four to six weeks after injury.
There is little evidence examining the relationship between anatomical landmarks, radiological placement of the tunnels and long-term clinical outcomes following anterior cruciate ligament (ACL) reconstruction. The aim of this study was to investigate the reproducibility of intra-operative landmarks for placement of the tunnels in single-bundle reconstruction of the ACL using four-strand hamstring tendon autografts. Isolated reconstruction of the ACL was performed in 200 patients, who were followed prospectively for seven years with use of the International Knee Documentation Committee forms and radiographs. Taking 0% as the anterior and 100% as the posterior extent, the femoral tunnel was a mean of 86% ( The use of intra-operative landmarks resulted in reproducible placement of the tunnels and an excellent clinical outcome seven years after operation. Vertical inclination was associated with increased rotational instability and degenerative radiological changes, while rupture of the graft was associated with posterior placement of the tibial tunnel. If the osseous tunnels are correctly placed, single-bundle reconstruction of the ACL adequately controls both anteroposterior and rotational instability.