Musculoskeletal diseases are having a growing impact worldwide. It is therefore crucial to have an evidence base to most effectively and efficiently implement future health services across different healthcare systems. International trials are an opportunity to address these challenges and have many potential benefits. They are, however, complex to set up and deliver, which may impact on the efficient and timely delivery of a project. There are a number of models of how international trials are currently being delivered across a range of orthopaedic patient populations, which are discussed here. The examples given highlight that the key to overcoming these challenges is the development of trusted and equal partnerships with collaborators in each country. International trials have the potential to address a global burden of disease, and in turn optimize the benefit to patients in the collaborating countries and those with similar health services and care systems. Cite this article:
Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes. Cite this article:
Total hip and knee arthroplasty (THA, TKA) are largely successful procedures; however, both have variable outcomes, resulting in some patients being dissatisfied with the outcome. Surgeons are turning to technologies such as robotic-assisted surgery in an attempt to improve outcomes. Robust studies are needed to find out if these innovations are really benefitting patients. The Robotic Arthroplasty Clinical and Cost Effectiveness Randomised Controlled Trials (RACER) trials are multicentre, patient-blinded randomized controlled trials. The patients have primary osteoarthritis of the hip or knee. The operation is Mako-assisted THA or TKA and the control groups have operations using conventional instruments. The primary clinical outcome is the Forgotten Joint Score at 12 months, and there is a built-in analysis of cost-effectiveness. Secondary outcomes include early pain, the alignment of the components, and medium- to long-term outcomes. This annotation outlines the need to assess these technologies and discusses the design and challenges when conducting such trials, including surgical workflows, isolating the effect of the operation, blinding, and assessing the learning curve. Finally, the future of robotic surgery is discussed, including the need to contemporaneously introduce and evaluate such technologies. Cite this article:
The use of tourniquets in lower limb trauma surgery to control bleeding and improve the surgical field is a long established practice. In this article, we review the evidence relating to harms and benefits of tourniquet use in lower limb fracture fixation surgery and report the results of a survey on current tourniquet practice among trauma surgeons in the UK.
The Canadian Orthopaedic Trauma Society was started in an endeavour to answer the difficult problem of obtaining enough patients to perform top-quality research into fractures. By maintaining a high standard, including randomised
Treatment guidelines for atypical femoral fractures associated
with bisphosphonates have not been established. We conducted a systematic
review of the treatment of atypical femoral fractures first, to
evaluate the outcomes of surgical fixation of complete atypical fractures
and secondly, to assess whether prophylactic surgery is necessary
for incomplete atypical fractures. Case reports and series were identified from the PubMed database
and were included if they described the treatment of atypical femoral
fractures. In total, 77 publications met our inclusion criteria
and 733 patients with 834 atypical complete or incomplete femoral fractures
were identified.Aims
Materials and Methods
The optimal treatment for independent patients with a displaced
intracapsular fracture of the hip remains controversial. The recognised
alternatives are hemiarthroplasty and total hip arthroplasty. At
present there is no established standard of care, with both types
of arthroplasty being used in many centres. We conducted a feasibility study comparing the clinical effectiveness
of a dual mobility acetabular component compared with standard polyethylene
component in total hip arthroplasty for independent patients with
a displaced intracapsular fracture of the hip, for a 12-month period
beginning in June 2013. The primary outcome was the risk of dislocation
one year post-operatively. Secondary outcome measures were EuroQol
5 Dimensions, ICEpop CAPability measure for Older people, Oxford
hip score, mortality and re-operation.Aims
Patients and Methods
In a systematic review, reports from national registers and clinical studies were identified and analysed with respect to revision rates after joint replacement, which were calculated as revisions per 100 observed component years. After primary hip replacement, a mean of 1.29 revisions per 100 observed component years was seen. The results after primary total knee replacement are 1.26 revisions per 100 observed component years, and 1.53 after medial unicompartmental replacement. After total ankle replacement a mean of 3.29 revisions per 100 observed component years was seen. The outcomes of total hip and knee replacement are almost identical. Revision rates of about 6% after five years and 12% after ten years are to be expected.
Orthopaedic surgery is in an exciting transitional period as modern surgical interventions, implants and scientific developments are providing new therapeutic options. As advances in basic science and technology improve our understanding of the pathology and repair of musculoskeletal tissue, traditional operations may be replaced by newer, less invasive procedures which are more appropriately targeted at the underlying pathophysiology. However, evidence-based practice will remain a basic requirement of care. Orthopaedic surgeons can and should remain at the forefront of the development of novel therapeutic interventions and their application. Progression of the potential of bench research into an improved array of orthopaedic treatments in an effective yet safe manner will require the development of a subgroup of specialists with extended training in research to play an important role in bridging the gap between laboratory science and clinical practice. International regulations regarding the introduction of new biological treatments will place an additional burden on the mechanisms of this translational process, and orthopaedic surgeons who are trained in science, surgery and the regulatory environment will be essential. Training and supporting individuals with these skills requires special consideration and discussion by the orthopaedic community. In this paper we review some traditional approaches to the integration of orthopaedic science and surgery, the therapeutic potential of current regenerative biomedical science for cartilage repair and ways in which we may develop surgeons with the skills required to translate scientific discovery into effective and properly assessed orthopaedic treatments.