Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom. Results. The greatest kinematic changes in the elbows were seen with the longest, + 4 mm, implant, which imposed a mean joint distraction of 2.8 mm in the radiohumeral joint and of 1.1 mm in the ulnohumeral joint, an increased mean varus angle of up to 2.4° for both the radius and the ulna, a mean shift of the radius of 2.0 mm in the ulnar direction, and a mean shift of the ulna of 1.0 mm posteriorly. Conclusion. The kinematics of the elbow deviated increasingly from those of the native joint with a 2 mm to a 4 mm lengthening of the radius. This confirms the importance of restoring the natural length of the radius when undertaking RHA. Cite this article: Bone Joint J 2024;106-B(10):1165–1175


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 530 - 535
1 Mar 2021
Giannicola G Castagna V Villani C Gumina S Scacchi M

Aims. It has been hypothesized that proximal radial neck resorption (PRNR) following press-fit radial head arthroplasty (RHA) is due to stress-shielding. We compared two different press-fit stems by means of radiographs to investigate whether the shape and size of the stems are correlated with the degree of PRNR. Methods. The radiographs of 52 RHAs were analyzed both at 14 days postoperatively and after two years. A cylindrical stem and a conical stem were implanted in 22 patients (group 1) and 30 patients (group 2), respectively. The PRNR was measured in the four quadrants of the radial neck and the degree of stem filling was calculated by analyzing the ratio between the prosthetic stem diameter (PSD) and the medullary canal diameter (MCD) at the proximal portion of the stem (level A), halfway along the stem length (level B), and distally at the stem tip (level C). Results. Overall, 50 of the 52 patients displayed PRNR. The mean PRNR observed was 3.9 mm (0 to 7.4). The degree of endomedullary stem filling at levels A, B, and C was 96%, 90%, and 68% in group 1, and 96%, 72%, and 57%, in group 2, with differences being significant at levels B (p < 0.001) and C (p < 0.001). No significant correlations emerged between the severity of PRNR and the three stem/canal ratios either within each group or between the groups. Conclusion. PRNR in press-fit RHA appears to be independent of the shape and size of the stems. Other causes besides stem design should be investigated to explain completely this phenomenon. Cite this article: Bone Joint J 2021;103-B(3):530–535


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 958 - 963
3 May 2021
Nguyen NTV Martinez-Catalan N Songy CE Sanchez-Sotelo J

Aims

The purpose of this study was to report bone adaptive changes after anatomical total shoulder arthroplasty (TSA) using a standard-length hydroxyapatite (HA)-coated humeral component, and to report on a computer-based analysis of radiographs to determine changes in peri-implant bone density objectively.

Methods

A total of 44 TSAs, performed between 2011 and 2014 using a cementless standard-length humeral component proximally coated with HA, were included. There were 23 males and 21 females with a mean age of 65 years (17 to 65). All shoulders had good quality radiographs at six weeks and five years postoperatively. Three observers graded bone adaptive changes. All radiographs were uploaded into a commercially available photographic software program. The grey value density of humeral radiological areas was corrected to the grey value density of the humeral component and compared over time.


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1292 - 1300
1 Jul 2021
Märtens N Heinze M Awiszus F Bertrand J Lohmann CH Berth A

Aims

The purpose of this study was to compare clinical results, long-term survival, and complication rates of stemless shoulder prosthesis with stemmed anatomical shoulder prostheses for treatment of osteoarthritis and to analyze radiological bone changes around the implants during follow-up.

Methods

A total of 161 patients treated with either a stemmed or a stemless shoulder arthroplasty for primary osteoarthritis of the shoulder were evaluated with a mean follow-up of 118 months (102 to 158). The Constant score (CS), the Disabilities of the Arm, Shoulder and Hand (DASH) score, and active range of motion (ROM) were recorded. Radiological analysis for bone adaptations was performed by plain radiographs. A Kaplan-Meier survivorship analysis was calculated and complications were noted.


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1107 - 1114
1 Sep 2019
Uy M Wang J Horner NS Bedi A Leroux T Alolabi B Khan M

Aims

The aim of this study was to evaluate the differences in revision and complication rates, functional outcomes, and radiological outcomes between cemented and press-fit humeral stems in primary anatomical total shoulder arthroplasty (TSA).

Materials and Methods

A comprehensive systematic review and meta-analysis was conducted searching for studies that included patients who underwent primary anatomical TSA for primary osteoarthritis or rheumatoid arthritis.