There is a lack of high-quality research investigating outcomes of Ponseti-treated idiopathic clubfeet and correlation with relapse. This study assessed clinical and quality of life (QoL) outcomes using a standardized core outcome set (COS), comparing children with and without relapse. A total of 11 international centres participated in this institutional review board-approved observational study. Data including demographics, information regarding presentation, treatment, and details of subsequent relapse and management were collected between 1 June 2022 and 30 June 2023 from consecutive clinic patients who had a minimum five-year follow-up. The clubfoot COS incorporating 31 parameters was used. A regression model assessed relationships between baseline variables and outcomes (clinical/QoL).Aims
Methods
Matrix metalloproteinases (MMPs), responsible
for extracellular matrix remodelling and angiogenesis, might play
a major role in the response of the growth plate to detrimental
loads that lead to overuse injuries in young athletes. In order
to test this hypothesis, human growth plate chondrocytes were subjected
to mechanical forces equal to either physiological loads, near detrimental
or detrimental loads for two hours. In addition, these cells were
exposed to physiological loads for up to 24 hours. Changes in the
expression of MMPs -2, -3 and -13 were investigated. We found that expression of MMPs in cultured human growth plate
chondrocytes increases in a linear manner with increased duration
and intensity of loading. We also showed for the first time that
physiological loads have the same effect on growth plate chondrocytes
over a long period of time as detrimental loads applied for a short
period. These findings confirm the involvement of MMPs in overuse injuries
in children. We suggest that training programmes for immature athletes
should be reconsidered in order to avoid detrimental stresses and
over-expression of MMPs in the growth plate, and especially to avoid
physiological loads becoming detrimental. Cite this article:
Permanent growth arrest of the longer bone is
an option in the treatment of minor leg-length discrepancies. The
use of a tension band plating technique to produce a temporary epiphysiodesis
is appealing as it avoids the need for accurate timing of the procedure
in relation to remaining growth. We performed an animal study to
establish if control of growth in a long bone is possible with tension
band plating. Animals (pigs) were randomised to temporary epiphysiodesis
on either the right or left tibia. Implants were removed after ten
weeks. Both tibiae were examined using MRI at baseline, and after
ten and 15 weeks. The median interphyseal distance was significantly shorter
on the treated tibiae after both ten weeks (p = 0.04) and 15 weeks
(p = 0.04). On T1-weighted images the metaphyseal water
content was significantly reduced after ten weeks on the treated
side (p = 0.04) but returned to values comparable with the untreated
side at 15 weeks (p = 0.14). Return of growth was observed in all
animals after removal of implants. Temporary epiphysiodesis can be obtained using tension band plating.
The technique is not yet in common clinical practice but might avoid
the need for the accurate timing of epiphysiodesis. Cite this article: