The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up.Aims
Methods
During the COVID-19 pandemic, many patients continue to require urgent surgery for hip fractures. However, the impact of COVID-19 on perioperative outcomes in these high-risk patients remains unknown. The objectives of this study were to establish the effects of COVID-19 on perioperative morbidity and mortality, and determine any risk factors for increased mortality in patients with COVID-19 undergoing hip fracture surgery. This multicentre cohort study included 340 COVID-19-negative patients versus 82 COVID-19-positive patients undergoing surgical treatment for hip fractures across nine NHS hospitals in Greater London, UK. Patients in both treatment groups were comparable for age, sex, body mass index, fracture configuration, and type of surgery performed. Predefined perioperative outcomes were recorded within a 30-day postoperative period. Univariate and multivariate analysis were used to identify risk factors associated with increased risk of mortality.Aims
Methods
Rotational acetabular osteotomy (RAO) is an effective joint-preserving surgical treatment for acetabular dysplasia. The purpose of this study was to investigate changes in muscle strength, gait speed, and clinical outcome in the operated hip after RAO over a one-year period using a standard protocol for rehabilitation. A total of 57 patients underwent RAO for acetabular dysplasia. Changes in muscle strength of the operated hip, 10 m gait speed, Japanese Orthopaedic Association (JOA) hip score, and factors correlated with hip muscle strength after RAO were retrospectively analyzed.Aims
Patients and Methods
The Unified Classification System (UCS) emphasises
the key principles in the assessment and management of peri-prosthetic
fractures complicating partial or total joint replacement. We tested the inter- and intra-observer agreement for the UCS
as applied to the pelvis and femur using 20 examples of peri-prosthetic
fracture in 17 patients. Each subtype of the UCS was represented
by at least one case. Specialist orthopaedic surgeons (experts)
and orthopaedic residents (pre-experts) assessed reliability on
two separate occasions. For the pelvis, the UCS showed inter-observer agreement of 0.837
(95% confidence intervals (CI) 0.798 to 0.876) for the experts and
0.728 (95% CI 0.689 to 0.767) for the pre-experts. The intra-observer
agreement for the experts was 0.861 (95% CI 0.760 to 0.963) and
0.803 (95% 0.688 to 0.918) for the pre-experts. For the femur, the
UCS showed an inter-observer kappa value of 0.805 (95% CI 0.765
to 0.845) for the experts and a value of 0.732 (95% CI 0.690 to 0.773)
for the pre-experts. The intra-observer agreement was 0.920 (95%
CI 0.867 to 0.973) for the experts, and 0.772 (95% CI 0.652 to 0.892)
for the pre-experts. This corresponds to a substantial and ‘almost
perfect’ inter- and intra-observer agreement for the UCS for peri-prosthetic
fractures of the pelvis and femur. We hope that unifying the terminology of these injuries will
assist in their assessment, treatment and outcome. Cite this article:
Persistent groin pain after seemingly successful
total hip replacement (THR) appears to have become more common.
Recent studies have indicated a high incidence after metal-on-polyethylene
and metal-on-metal conventional THR and it has been documented in
up to 18% of patients after metal-on-metal resurfacing. There are many
causes, including acetabular loosening, stress fracture, and iliopsoas
tendonitis and impingement. The evaluation of this problem requires
a careful history and examination, plain radiographs and an algorithmic approach
to special diagnostic imaging and tests. Non-operative treatment
is not usually successful. Specific operative treatment depending
on the cause of the pain usually involves revision of the acetabular
component, iliopsoas tenotomy or other procedures, and is usually
successful. Here, an appropriate algorithm is described.
It is probable that both genetic and environmental
factors play some part in the aetiology of most cases of degenerative
hip disease. Geneticists have identified some single gene disorders
of the hip, but have had difficulty in identifying the genetics
of many of the common causes of degenerative hip disease. The heterogeneity
of the phenotypes studied is part of the problem. A detailed classification
of phenotypes is proposed. This study is based on careful documentation
of 2003 consecutive total hip replacements performed by a single
surgeon between 1972 and 2000. The concept that developmental problems
may initiate degenerative hip disease is supported. The influences
of gender, age and body mass index are outlined. Biomechanical explanations
for some of the radiological appearances encountered are suggested.
The body weight lever, which is larger than the abductor lever, causes
the abductor power to be more important than body weight. The possibility
that a deficiency in joint lubrication is a cause of degenerative
hip disease is discussed. Identifying the phenotypes may help geneticists
to identify genes responsible for degenerative hip disease, and
eventually lead to a definitive classification.
Ensuring the accuracy of the intra-operative orientation of the acetabular component during a total hip replacement can be difficult. In this paper we introduce a reproducible technique using the transverse acetabular ligament to determine the anteversion of the acetabular component. We have found that this ligament can be identified in virtually every hip undergoing primary surgery. We describe an intra-operative grading system for the appearance of the ligament. This technique has been used in 1000 consecutive cases. During a minimum follow-up of eight months the dislocation rate was 0.6%. This confirms our hypothesis that the transverse acetabular ligament can be used to determine the position of the acetabular component. The method has been used in both conventional and minimally-invasive approaches.