Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 777 - 781
1 Jun 2013
Abolghasemian M Drexler M Abdelbary H Sayedi H Backstein D Kuzyk P Safir O Gross AE

In this retrospective study we evaluated the proficiency of shelf autograft in the restoration of bone stock as part of primary total hip replacement (THR) for hip dysplasia, and in the results of revision arthroplasty after failure of the primary arthroplasty. Of 146 dysplastic hips treated by THR and a shelf graft, 43 were revised at an average of 156 months, 34 of which were suitable for this study (seven hips were excluded because of insufficient bone-stock data and two hips were excluded because allograft was used in the primary THR). The acetabular bone stock of the hips was assessed during revision surgery. The mean implant–bone contact was 58% (50% to 70%) at primary THR and 78% (40% to 100%) at the time of the revision, which was a significant improvement (p < 0.001). At primary THR all hips had had a segmental acetabular defect > 30%, whereas only five (15%) had significant segmental bone defects requiring structural support at the time of revision. In 15 hips (44%) no bone graft or metal augments were used during revision.

A total of 30 hips were eligible for the survival study. At a mean follow-up of 103 months (27 to 228), two aseptic and two septic failures had occurred. Kaplan-Meier survival analysis of the revision procedures demonstrated a ten-year survival rate of 93.3% (95% confidence interval (CI) 78 to 107) with clinical or radiological failure as the endpoint. The mean Oxford hip score was 38.7 (26 to 46) for non-revised cases at final follow-up.

Our results indicate that the use of shelf autografts during THR for dysplastic hips restores bone stock, contributing to the favourable survival of the revision arthroplasty should the primary procedure fail.

Cite this article: Bone Joint J 2013;95-B:777–81.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 103 - 108
1 Nov 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein DJ Safir OA Gross AE

The conventional method for reconstructing acetabular bone loss at revision surgery includes using structural bone allograft. The disadvantages of this technique promoted the advent of metallic but biocompatible porous implants to fill bone defects enhancing initial and long-term stability of the acetabular component. This paper presents the indications, surgical technique and the outcome of using porous metal acetabular augments for reconstructing acetabular defects.

Cite this article: Bone Joint J 2013;95-B, Supple A:103–8.


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 607 - 613
1 May 2017
Mäkinen TJ Abolghasemian M Watts E Fichman SG Kuzyk P Safir OA Gross AE

Aims

It may not be possible to undertake revision total hip arthroplasty (THA) in the presence of massive loss of acetabular bone stock using standard cementless hemispherical acetabular components and metal augments, as satisfactory stability cannot always be achieved. We aimed to study the outcome using a reconstruction cage and a porous metal augment in these patients.

Patients and Methods

A total of 22 acetabular revisions in 19 patients were performed using a combination of a reconstruction cage and porous metal augments. The augments were used in place of structural allografts. The mean age of the patients at the time of surgery was 70 years (27 to 85) and the mean follow-up was 39 months (27 to 58). The mean number of previous THAs was 1.9 (1 to 3). All patients had segmental defects involving more than 50% of the acetabulum and seven hips had an associated pelvic discontinuity.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 166 - 172
1 Feb 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein D Safir O Gross AE

Trabecular metal (TM) augments are a relatively new option for reconstructing segmental bone loss during acetabular revision. We studied 34 failed hip replacements in 34 patients that were revised between October 2003 and March 2010 using a TM acetabular shell and one or two augments. The mean age of the patients at the time of surgery was 69.3 years (46 to 86) and the mean follow-up was 64.5 months (27 to 107). In all, 18 patients had a minor column defect, 14 had a major column defect, and two were associated with pelvic discontinuity. The hip centre of rotation was restored in 27 patients (79.4%). The Oxford hip score increased from a mean of 15.4 points (6 to 25) before revision to a mean of 37.7 (29 to 47) at the final follow-up. There were three aseptic loosenings of the construct, two of them in the patients with pelvic discontinuity. One septic loosening also occurred in a patient who had previously had an infected hip replacement. The augments remained stable in two of the failed hips. Whenever there was a loose acetabular component in contact with a stable augment, progressive metal debris shedding was evident on the serial radiographs. Complications included another deep infection treated without revision surgery. Good clinical and radiological results can be expected for bone-deficient acetabula treated by a TM cup and augment, but for pelvic discontinuities this might not be a reliable option.

Cite this article: Bone Joint J 2013;95-B:166–72.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 73 - 77
1 Jan 2016
Mäkinen TJ Fichman SG Watts E Kuzyk PRT Safir OA Gross AE

An uncemented hemispherical acetabular component is the mainstay of acetabular revision and gives excellent long-term results.

Occasionally, the degree of acetabular bone loss means that a hemispherical component will be unstable when sited in the correct anatomical location or there is minimal bleeding host bone left for biological fixation. On these occasions an alternative method of reconstruction has to be used.

A major column structural allograft has been shown to restore the deficient bone stock to some degree, but it needs to be off-loaded with a reconstruction cage to prevent collapse of the graft. The use of porous metal augments is a promising method of overcoming some of the problems associated with structural allograft. If the defect is large, the augment needs to be protected by a cage to allow ingrowth to occur. Cup-cage reconstruction is an effective method of treating chronic pelvic discontinuity and large contained or uncontained bone defects.

This paper presents the indications, surgical techniques and outcomes of various methods which use acetabular reconstruction cages for revision total hip arthroplasty.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):73–7.