Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 151 - 157
1 Jun 2020
Gil D Atici AE Connolly RL Hugard S Shuvaev S Wannomae KK Oral E Muratoglu OK

Aims. We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement. Methods. Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement. Results. Gentamicin-loaded UHMWPE tibial components not only eradicated planktonic Staphylococcus aureus, but also prevented colonization of both femoral and tibial components. The proposed spacer possesses far superior mechanical and wear properties when compared with conventional bone cement spacers. Conclusion. The proposed gentamicin-eluting UHMWPE spacer can provide antibacterial efficacy comparable with currently used bone cement spacers, while overcoming their drawbacks. The novel spacer proposed here has the potential to drastically reduce complications associated with currently used bone cement spacers and substantially improve patients’ quality of life during the treatment. Cite this article: Bone Joint J 2020;102-B(6 Supple A):151–157


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims

Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods

A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 163 - 169
1 Jun 2020
Lawrie CM Jo S Barrack T Roper S Wright RW Nunley RM Barrack RL

Aims

The aim of this study was to determine if the local delivery of vancomycin and tobramycin in primary total knee arthroplasty (TKA) can achieve intra-articular concentrations exceeding the minimum inhibitory concentration thresholds for bacteria causing acute prosthetic joint infection (PJI).

Methods

Using a retrospective single-institution database of all primary TKAs performed between January 1 2014 and May 7 2019, we identified patients with acute PJI that were managed surgically within 90 days of the initial procedure. The organisms from positive cultures obtained at the time of revision were tested for susceptibility to gentamicin, tobramycin, and vancomycin. A prospective study was then performed to determine the intra-articular antibiotic concentration on postoperative day one after primary TKA using one of five local antibiotic delivery strategies with tobramycin and/or vancomycin mixed into the polymethylmethacrylate (PMMA) or vancomycin powder.


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1331 - 1347
1 Nov 2019
Jameson SS Asaad A Diament M Kasim A Bigirumurame T Baker P Mason J Partington P Reed M

Aims

Antibiotic-loaded bone cements (ALBCs) may offer early protection against the formation of bacterial biofilm after joint arthroplasty. Use in hip arthroplasty is widely accepted, but there is a lack of evidence in total knee arthroplasty (TKA). The objective of this study was to evaluate the use of ALBC in a large population of TKA patients.

Materials and Methods

Data from the National Joint Registry (NJR) of England and Wales were obtained for all primary cemented TKAs between March 2003 and July 2016. Patient, implant, and surgical variables were analyzed. Cox proportional hazards models were used to assess the influence of ALBC on risk of revision. Body mass index (BMI) data were available in a subset of patients.


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 559 - 564
1 May 2019
Takemura S Minoda Y Sugama R Ohta Y Nakamura S Ueyama H Nakamura H

Aims

The use of vitamin E-infused highly crosslinked polyethylene (HXLPE) in total knee prostheses is controversial. In this paper we have compared the clinical and radiological results between conventional polyethylene and vitamin E-infused HXLPE inserts in total knee arthroplasty (TKA).

Patients and Methods

The study included 200 knees (175 patients) that underwent TKA using the same total knee prostheses. In all, 100 knees (77 patients) had a vitamin E-infused HXLPE insert (study group) and 100 knees (98 patients) had a conventional polyethylene insert (control group). There were no significant differences in age, sex, diagnosis, preoperative knee range of movement (ROM), and preoperative Knee Society Score (KSS) between the two groups. Clinical and radiological results were evaluated at two years postoperatively.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1330 - 1335
1 Oct 2018
Ponzio DY Weitzler L deMeireles A Esposito CI Wright TM Padgett DE

Aims

The aim of this study was to evaluate the surface damage, the density of crosslinking, and oxidation in retrieved antioxidant-stabilized highly crosslinked polyethylene (A-XLPE) tibial inserts from total knee arthroplasty (TKA), and to compare the results with a matched cohort of standard remelted highly crosslinked polyethylene (XLPE) inserts.

Materials and Methods

A total of 19 A-XLPE tibial inserts were retrieved during revision TKA and matched to 18 retrieved XLPE inserts according to the demographics of the patients, with a mean length of implantation of 15 months (1 to 42). The percentage areas of PE damage on the articular surfaces and the modes of damage were measured. The density of crosslinking of the PE and oxidation were measured at loaded and unloaded regions on these surfaces.


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 996 - 1002
1 Aug 2017
Brown TS Van Citters DW Berry DJ Abdel MP

Advances in polyethylene (PE) in total hip arthroplasty have led to interest and increased use of highly crosslinked PE (HXLPE) in total knee arthroplasty (TKA). Biomechanical data suggest improved wear characteristics for HXLPE inserts over conventional PE in TKA. Short-term results from registry data and few clinical trials are promising. Our aim is to present a review of the history of HXLPEs, the use of HXLPE inserts in TKA, concerns regarding potential mechanical complications, and a thorough review of the available biomechanical and clinical data.

Cite this article: Bone Joint J 2017;99-B:996–1002.


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 867 - 873
1 Jul 2016
Dalury DF

As the number of younger and more active patients treated with total knee arthroplasty (TKA) continues to increase, consideration of better fixation as a means of improving implant longevity is required. Cemented TKA remains the reference standard with the largest body of evidence and the longest follow-up to support its use. However, cementless TKA, may offer the opportunity of a more bone-sparing procedure with long lasting biological fixation to the bone. We undertook a review of the literature examining advances of cementless TKA and the reported results.

Cite this article: Bone Joint J 2016;98-B:867–73.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 205 - 209
1 Feb 2012
Kadonishi Y Deie M Takata T Ochi M

We examined whether enamel matrix derivative (EMD) could improve healing of the tendon–bone interface following reconstruction of the anterior cruciate ligament (ACL) using a hamstring tendon in a rat model. ACL reconstruction was performed in both knees of 30 Sprague-Dawley rats using the flexor digitorum tendon. The effect of commercially available EMD (EMDOGAIN), a preparation of matrix proteins from developing porcine teeth, was evaluated. In the left knee joint the space around the tendon–bone interface was filled with 40 µl of EMD mixed with propylene glycol alginate (PGA). In the right knee joint PGA alone was used. The ligament reconstructions were evaluated histologically and biomechanically at four, eight and 12 weeks (n = 5 at each time point). At eight weeks, EMD had induced a significant increase in collagen fibres connecting to bone at the tendon–bone interface (p = 0.047), whereas the control group had few fibres and the tendon–bone interface was composed of cellular and vascular fibrous tissues. At both eight and 12 weeks, the mean load to failure in the treated specimens was higher than in the controls (p = 0.009). EMD improved histological tendon–bone healing at eight weeks and biomechanical healing at both eight and 12 weeks. EMD might therefore have a human application to enhance tendon–bone repair in ACL reconstruction.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1009 - 1015
1 Aug 2012
Scott CEH Biant LC

Stems improve the mechanical stability of tibial components in total knee replacement (TKR), but come at a cost of stress shielding along their length. Their advantages include resistance to shear, reduced tibial lift-off and increased stability by reducing micromotion. Longer stems may have disadvantages including stress shielding along the length of the stem with associated reduction in bone density and a theoretical risk of subsidence and loosening, peri-prosthetic fracture and end-of-stem pain. These features make long stems unattractive in the primary TKR setting, but often desirable in revision surgery with bone loss and instability. In the revision scenario, stems are beneficial in order to convey structural stability to the construct and protect the reconstruction of bony defects. Cemented and uncemented long stemmed implants have different roles depending on the nature of the bone loss involved.

This review discusses the biomechanics of the design of tibial components and stems to inform the selection of the component and the technique of implantation.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 914 - 920
1 Jul 2011
Rogers BA Middleton FR Shearwood-Porter N Kinch S Roques A Bradley NW Browne M

Two-stage revision surgery for infected total knee replacement offers the highest rate of success for the elimination of infection. The use of articulating antibiotic-laden cement spacers during the first stage to eradicate infection also allows protection of the soft tissues against excessive scarring and stiffness. We have investigated the effect of cyclical loading of cement spacers on the elution of antibiotics. Femoral and tibial spacers containing vancomycin at a constant concentration and tobramycin of varying concentrations were studied in vitro. The specimens were immersed and loaded cyclically to 250 N, with a flexion excursion of 45°, for 35 000 cycles. The buffered solution was sampled at set intervals and the antibiotic concentration was established so that the elution could be calculated. Unloaded samples were used as a control group for statistical comparison.

The elution of tobramycin increased proportionately with its concentration in cement and was significantly higher at all sampling times from five minutes to 1680 minutes in loaded components compared with the control group (p = 0.021 and p = 0.003, respectively). A similar trend was observed with elution of vancomycin, but this failed to reach statistical significance at five, 1320 and 1560 minutes (p = 0.0508, p = 0.067 and p = 0.347, respectively). However, cyclically loaded and control components showed an increased elution of vancomycin with increasing tobramycin concentration in the specimens, despite all components having the same vancomycin concentration. The concentration of tobramycin influences both tobramycin and vancomycin elution from bone cement. Cyclical loading of the cement spacers enhanced the elution of vancomycin and tobramycin.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 656 - 663
1 May 2005
Toms AD McClelland D Chua L de Waal Malefijt M Verdonschot N Jones RS Kuiper J

Clinical experience of impaction bone grafting for revision knee arthroplasty is limited, with initial stability of the tibial tray emerging as a major concern. The length of the stem and its diameter have been altered to improve stability. Our aim was to investigate the effect of the type of stem, support of the rim and graft impaction on early stability of the tray.

We developed a system for impaction grafting of trays which we used with morsellised bone in artificial tibiae. Trays with short, long thick or long thin stems were implanted, with or without support of the rim. They were cyclically loaded while measuring relative movement.

Long-stemmed trays migrated 4.5 times less than short-stemmed trays, regardless of diameter. Those with support migrated 2.8 times less than those without. The migration of short-stemmed trays correlated inversely with the density of the impacted groups. That of impaction-grafted tibial trays was in the range reported for uncemented primary trays. Movements of short-stemmed trays without cortical support were largest and sensitive to the degree of compaction of the graft. If support of the rim was sufficient or a long stem was used, impacted morsellised bone graft achieved adequate initial stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 36 - 40
1 Jan 2005
Mountney J Senavongse W Amis AA Thomas NP

The tensile strength of the medial patellofemoral ligament (MPFL), and of surgical procedures which reconstitute it, are unknown. Ten fresh cadaver knees were prepared by isolating the patella, leaving only the MPFL as its attachment to the medial femoral condyle. The MPFL was either repaired by using a Kessler suture or reconstructed using either bone anchors or one of two tendon grafting techniques. The tensile strength and the displacement to peak force of the MPFL were then measured using an Instron materials-testing machine.

The MPFL was found to have a mean tensile strength of 208 N (SD 90) at 26 mm (SD 7) of displacement. The strengths of the other techniques were: sutures alone, 37 N (SD 27); bone anchors plus sutures, 142 N (SD 39); blind-tunnel tendon graft, 126 N (SD 21); and through-tunnel tendon graft, 195 N (SD 66). The last was not significantly weaker than the MPFL itself.