The femoral head receives blood supply mainly
from the deep branch of the medial femoral circumflex artery (MFCA).
In previous studies we have performed anatomical dissections of
16 specimens and subsequently visualised the arteries supplying
the femoral head in
55 healthy individuals. In this further radiological study we compared
the arterial supply of the femoral head in 35 patients (34 men and
one woman, mean age 37.1 years (16 to 64)) with a fracture/dislocation
of the hip with a historical control group of 55 hips. Using CT
angiography, we identified the three main arteries supplying the femoral
head: the deep branch and the postero-inferior nutrient artery both
arising from the
The femoral head receives its blood supply primarily
from the medial femoral circumflex artery, with its deep branch being
the most important. In a previous study, we performed classical anatomical dissections
of 16 hips. We have extended our investigation with a radiological
study, in which we aimed to visualise the arteries supplying the
femoral head in healthy individuals. We analysed 55 CT angiographic
images of the hip. Using 64-row CT angiography, we identified three main arteries
supplying the femoral head: the deep branch of the medial femoral
circumflex artery and the posterior inferior nutrient artery originating
from the medial femoral circumflex artery, and the piriformis branch
of the inferior gluteal artery. CT angiography is a good method
for visualisation of the arteries supplying the femoral head. The
current radiological studies will provide information for further
investigation of vascularity after traumatic dislocation of the
hip, using CT angiography.
Aims. We aimed to quantify the relative contributions of the medial
femoral circumflex artery (MFCA) and lateral femoral circumflex
artery (LFCA) to the arterial supply of the head and neck of the
femur. Materials and Methods. We acquired ten cadaveric pelvises. In each of these, one hip
was randomly assigned as experimental and the other as a matched
control. The
This study investigates and defines the topographic
anatomy of the medial femoral circumflex artery (MFCA) terminal
branches supplying the femoral head (FH). Gross dissection of 14
fresh–frozen cadaveric hips was undertaken to determine the extra
and intracapsular course of the
The primary source for the blood supply of the head of the femur is the deep branch of the medial femoral circumflex artery (MFCA). In posterior approaches to the hip and pelvis the short external rotators are often divided. This can damage the deep branch and interfere with perfusion of the head. We describe the anatomy of the
We performed a series of 16 anatomical dissections
on Caucasian cadaver material to determine the surgical anatomy
of the medial femoral circumflex artery (MFCA) and its anastomoses.
These confirmed that the femoral head receives its blood supply
primarily from the
The aim of this study was to evaluate the efficacy of the surgical dislocation approach and modified trapdoor procedure for the treatment of chondroblastoma of the femoral head. A total of 17 patients (ten boys, seven girls; mean age 16.4 years (11 to 26)) diagnosed with chondroblastoma of the femoral head who underwent surgical dislocation of the hip joint, modified trapdoor procedure, curettage, and bone grafting were enrolled in this study and were followed-up for a mean of 35.9 months (12 to 76). Healing and any local recurrence were assessed via clinical and radiological tests. Functional outcome was evaluated using the Musculoskeletal Tumour Society scoring system (MSTS). Patterns of bone destruction were evaluated using the Lodwick classification. Secondary osteoarthritis was classified via radiological analysis following the Kellgren–Lawrence grading system. Steinberg classification was used to evaluate osteonecrosis of the femoral head.Aims
Patients and Methods
The use of joint-preserving surgery of the hip
has been largely abandoned since the introduction of total hip replacement.
However, with the modification of such techniques as pelvic osteotomy,
and the introduction of intracapsular procedures such as surgical
hip dislocation and arthroscopy, previously unexpected options for
the surgical treatment of sequelae of childhood conditions, including
developmental dysplasia of the hip, slipped upper femoral epiphysis
and Perthes’ disease, have become available. Moreover, femoroacetabular
impingement has been identified as a significant aetiological factor
in the development of osteoarthritis in many hips previously considered to
suffer from primary osteoarthritis. As mechanical causes of degenerative joint disease are now recognised
earlier in the disease process, these techniques may be used to
decelerate or even prevent progression to osteoarthritis. We review
the recent development of these concepts and the associated surgical
techniques. Cite this article:
The inferior gluteal artery is described in standard anatomy textbooks as contributing to the blood supply of the hip through an anastomosis with the medial femoral circumflex artery. The site(s) of the anastomosis has not been described previously. We undertook an injection study to define the anastomotic connections between these two arteries and to determine whether the inferior gluteal artery could supply the lateral epiphyseal arteries alone. From eight fresh-frozen cadaver pelvic specimens we were able to inject the vessels in 14 hips with latex moulding compound through either the medial femoral circumflex artery or the inferior gluteal artery. Injected vessels around the hip were then carefully exposed and documented photographically. In seven of the eight specimens a clear anastomosis was shown between the two arteries adjacent to the tendon of obturator externus. The terminal vessel arising from this anastomosis was noted to pass directly beneath the posterior capsule of the hip before ascending the superior aspect of the femoral neck and terminating in the lateral epiphyseal vessels. At no point was the terminal vessel found between the capsule and the conjoined tendon. The medial femoral circumflex artery receives a direct supply from the inferior gluteal artery immediately before passing beneath the capsule of the hip. Detailed knowledge of this anatomy may help to explain the development of avascular necrosis after hip trauma, as well as to allow additional safe surgical exposure of the femoral neck and head.