Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1328 - 1337
1 Oct 2015
Briant-Evans TW Lyle N Barbur S Hauptfleisch J Amess R Pearce AR Conn KS Stranks GJ Britton JM

We investigated the changes seen on serial metal artefact reduction magnetic resonance imaging scans (MARS-MRI) of metal-on-metal total hip arthroplasties (MoM THAs). In total 155 THAs, in 35 male and 100 female patients (mean age 70.4 years, 42 to 91), underwent at least two MRI scans at a mean interval of 14.6 months (2.6 to 57.1), at a mean of 48.2 months (3.5 to 93.3) after primary hip surgery. Scans were graded using a modification of the Oxford classification. Progression of disease was defined as an increase in grade or a minimum 10% increase in fluid lesion volume at second scan. A total of 16 hips (30%) initially classified as ‘normal’ developed an abnormality on the second scan. Of those with ‘isolated trochanteric fluid’ 9 (47%) underwent disease progression, as did 7 (58%) of ‘effusions’. A total of 54 (77%) of hips initially classified as showing adverse reactions to metal debris (ARMD) progressed, with higher rates of progression in higher grades. Disease progression was associated with high blood cobalt levels or an irregular pseudocapsule lining at the initial scan. There was no association with changes in functional scores. Adverse reactions to metal debris in MoM THAs may not be as benign as previous reports have suggested. Close radiological follow-up is recommended, particularly in high-risk groups.

Cite this article: Bone Joint J 2015;97-B:1328–37.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 852 - 858
1 Jul 2022
Grothe T Günther K Hartmann A Blum S Haselhoff R Goronzy J

Aims

Head-taper corrosion is a cause of failure in total hip arthroplasty (THA). Recent reports have described an increasing number of V40 taper failures with adverse local tissue reaction (ALTR). However, the real incidence of V40 taper damage and its cause remain unknown. The aim of this study was to evaluate the long-term incidence of ALTR in a consecutive series of THAs using a V40 taper and identify potentially related factors.

Methods

Between January 2006 and June 2007, a total of 121 patients underwent THA using either an uncemented (Accolade I, made of Ti12Mo6Zr2Fe; Stryker, USA) or a cemented (ABG II, made of cobalt-chrome-molybdenum (CoCrMo); Stryker) femoral component, both with a V40 taper (Stryker). Uncemented acetabular components (Trident; Stryker) with crosslinked polyethylene liners and CoCr femoral heads of 36 mm diameter were used in all patients. At a mean folllow-up of 10.8 years (SD 1.1), 94 patients (79%) were eligible for follow-up (six patients had already undergone a revision, 15 had died, and six were lost to follow-up). A total of 85 THAs in 80 patients (mean age 61 years (24 to 75); 47 (56%) were female) underwent clinical and radiological evaluation, including the measurement of whole blood levels of cobalt and chrome. Metal artifact reduction sequence MRI scans of the hip were performed in 71 patients.


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1018 - 1024
1 Aug 2018
Ando W Yasui H Yamamoto K Oinuma K Tokunaga H Inaba Y Kobayashi N Aihara M Nakanishi R Ohzono K

Aims

The purpose of this study was to compare two different types of metal-on-metal (MoM) bearing for total hip arthroplasty (THA): one with a large femoral head (38 mm to 52 mm) and the other with a conventional femoral head (28 mm or 32 mm). We compared clinical outcome, blood metal ion levels, and the incidence of pseudotumour in the two groups.

Patients and Methods

Between December 2009 and December 2011, 62 patients underwent MoM THA with a large femoral head (Magnum group) and 57 patients an MoM THA with a conventional femoral head (conventional group). Clinical outcome was assessed using the Harris Hip score, University of California, Los Angeles (UCLA) activity score and EuroQol-5D (EQ-5D). Blood metal ion levels were measured and MRI scans were analyzed at a minimum of five years postoperatively.


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1594 - 1599
1 Dec 2014
Hwang KT Kim YH Kim YS Ryu JA

We investigated the incidence of soft-tissue lesions after small head metal-on-metal total hip replacement (MoM THR). Between December 1993 and May 1999, 149 patients (195 hips) underwent primary cementless MoM THR.

During the follow-up period, three patients (five THRs) died and eight patients (14 THRs) were lost to follow-up. We requested that all patients undergo CT evaluation. After exclusion of five patients (six THRs) who had undergone a revision procedure, and 22 (28 THRs) who were unwilling to take part in this study, 111 patients (142 THRs) were evaluated. There were 63 men (88 THRs) and 48 women (54 THRs) with a mean age of 45.7 years (37 to 56) at the time of surgery. The mean follow-up was 15.4 years (13 to 19). A soft-tissue lesion was defined as an abnormal peri-prosthetic collection of fluid, solid lesion or asymmetrical soft-tissue mass.

At final follow-up, soft-tissue lesions were found in relation to 28 THRs (19.7%), including 25 solid and three cystic lesions. They were found in 20 men and eight women; 26 lesions were asymptomatic and two were symptomatic. The mean maximal diameter of the soft-tissue lesion was 42.3 mm (17 to 135). The relatively high rate of soft-tissue lesions observed with small head MoM THR remains a concern.

Cite this article: Bone Joint J 2014;96-B:1594–9.


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1626 - 1631
1 Dec 2013
van der Weegen W Brakel K Horn RJ Hoekstra HJ Sijbesma T Pilot P Nelissen RGHH

The aim of this study was to establish the natural course of unrevised asymptomatic pseudotumours after metal-on-metal (MoM) hip resurfacing during a six- to 12-month follow-up period. We used repeated metal artefact reduction sequence (MARS)-magnetic resonance imaging (MRI), serum metal ion analysis and clinical examination to study 14 unrevised hips (mean patient age 52.7 years, 46 to 68, 5 female, 7 male) with a pseudotumour and 23 hips (mean patient age 52.8 years, 38 to 69, 7 female, 16 male) without a pseudotumour. The mean post-operative time to the first MARS-MRI scan was 4.3 years (2.2 to 8.3), and mean time between the first and second MARS-MRI scan was eight months (6 to 12). At the second MRI scan, the grade of severity of the pseudotumour had not changed in 35 hips. One new pseudotumour (Anderson C2 score, moderate) was observed, and one pseudotumour was downgraded from C2 (moderate) to C1 (mild). In general, the characteristics of the pseudotumours hardly changed.

Repeated MARS-MRI scans within one year in patients with asymptomatic pseudotumours after MoM hip resurfacing showed little or no variation. In 23 patients without pseudotumour, one new asymptomatic pseudotumour was detected.

This is the first longitudinal study on the natural history of pseudotumours using MARS-MRI scans in hip resurfacing, and mirrors recent results for 28 mm diameter MoM total hip replacement.

Cite this article: Bone Joint J 2013;95-B:1626–31.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 14 - 18
1 Nov 2012
Lombardi, Jr AV Barrack RL Berend KR Cuckler JM Jacobs JJ Mont MA Schmalzried TP

Since 1996 more than one million metal-on-metal articulations have been implanted worldwide. Adverse reactions to metal debris are escalating. Here we present an algorithmic approach to patient management. The general approach to all arthroplasty patients returning for follow-up begins with a detailed history, querying for pain, discomfort or compromise of function. Symptomatic patients should be evaluated for intra-articular and extra-articular causes of pain. In large head MoM arthroplasty, aseptic loosening may be the source of pain and is frequently difficult to diagnose. Sepsis should be ruled out as a source of pain. Plain radiographs are evaluated to rule out loosening and osteolysis, and assess component position. Laboratory evaluation commences with erythrocyte sedimentation rate and C-reactive protein, which may be elevated. Serum metal ions should be assessed by an approved facility. Aspiration, with manual cell count and culture/sensitivity should be performed, with cloudy to creamy fluid with predominance of monocytes often indicative of failure. Imaging should include ultrasound or metal artifact reduction sequence MRI, specifically evaluating for fluid collections and/or masses about the hip. If adverse reaction to metal debris is suspected then revision to metal or ceramic-on-polyethylene is indicated and can be successful. Delay may be associated with extensive soft-tissue damage and hence poor clinical outcome.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 572 - 579
1 May 2011
Haddad FS Thakrar RR Hart AJ Skinner JA Nargol AVF Nolan JF Gill HS Murray DW Blom AW Case CP

Lately, concerns have arisen following the use of large metal-on-metal bearings in hip replacements owing to reports of catastrophic soft-tissue reactions resulting in implant failure and associated complications. This review examines the literature and contemporary presentations on current clinical dilemmas in metal-on-metal hip replacement.