Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 261 - 267
1 Feb 2020
Tøndevold N Lastikka M Andersen T Gehrchen M Helenius I

Aims

It is uncertain whether instrumented spinal fixation in nonambulatory children with neuromuscular scoliosis should finish at L5 or be extended to the pelvis. Pelvic fixation has been shown to be associated with up to 30% complication rates, but is regarded by some as the standard for correction of deformity in these conditions. The incidence of failure when comparing the most caudal level of instrumentation, either L5 or the pelvis, using all-pedicle screw instrumentation has not previously been reported. In this retrospective study, we compared nonambulatory patients undergoing surgery at two centres: one that routinely instrumented to L5 and the other to the pelvis.

Methods

In all, 91 nonambulatory patients with neuromuscular scoliosis were included. All underwent surgery using bilateral, segmental, pedicle screw instrumentation. A total of 40 patients underwent fusion to L5 and 51 had their fixation extended to the pelvis. The two groups were assessed for differences in terms of clinical and radiological findings, as well as complications.


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 977 - 982
1 Jul 2013
Wu AM Tian NF Wu LJ He W Ni WF Wang XY Xu HZ Chi YL

The purpose of this study was to determine whether it would be feasible to use oblique lumbar interbody fixation for patients with degenerative lumbar disease who required a fusion but did not have a spondylolisthesis. A series of CT digital images from 60 patients with abdominal disease were reconstructed in three dimensions (3D) using Mimics v10.01: a digital cylinder was superimposed on the reconstructed image to simulate the position of an interbody screw. The optimal entry point of the screw and measurements of its trajectory were recorded. Next, 26 cadaveric specimens were subjected to oblique lumbar interbody fixation on the basis of the measurements derived from the imaging studies. These were then compared with measurements derived directly from the cadaveric vertebrae. Our study suggested that it is easy to insert the screws for L1/2, L2/3 and L3/4 fixation: there was no significant difference in measurements between those of the 3-D digital images and the cadaveric specimens. For L4/5 fixation, part of L5 inferior articular process had to be removed to achieve the optimal trajectory of the screw. For L5/S1 fixation, the screw heads were blocked by iliac bone: consequently, the interior oblique angle of the cadaveric specimens was less than that seen in the 3D digital images. . We suggest that CT scans should be carried out pre-operatively if this procedure is to be adopted in clinical practice. This will assist in determining the feasibility of the procedure and will provide accurate information to assist introduction of the screws. Cite this article: Bone Joint J 2013;95-B:977–82


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1414 - 1420
1 Aug 2021
Wellings EP Houdek MT Owen AR Bakri K Yaszemski MJ Sim FH Moran SL Rose PS

Aims

Orthopaedic and reconstructive surgeons are faced with large defects after the resection of malignant tumours of the sacrum. Spinopelvic reconstruction is advocated for resections above the level of the S1 neural foramina or involving the sacroiliac joint. Fixation may be augmented with either free vascularized fibular flaps (FVFs) or allograft fibular struts (AFSs) in a cathedral style. However, there are no studies comparing these reconstructive techniques.

Methods

We reviewed 44 patients (23 female, 21 male) with a mean age of 40 years (SD 17), who underwent en bloc sacrectomy for a malignant tumour of the sacrum with a reconstruction using a total (n = 20), subtotal (n = 2), or hemicathedral (n = 25) technique. The reconstructions were supplemented with a FVF in 25 patients (57%) and an AFS in 19 patients (43%). The mean length of the strut graft was 13 cm (SD 4). The mean follow-up was seven years (SD 5).