Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 108 - 114
1 Jul 2019
Ji G Xu R Niu Y Li N Ivashkiv L Bostrom MPG Greenblatt MB Yang X

Aims. It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse tibial implant by pharmacologically blocking the vascular endothelial growth factor (VEGF) pathway. Materials and Methods. An implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (n = 38). Mice received anti-VEGF receptor-1 (VEGFR-1) antibody (25 mg/kg) and VEGF receptor-2 (VEGFR-2) antibody (25 mg/kg; n = 19) or an isotype control antibody (n = 19). Flow cytometric (n = 4/group) and immunofluorescent (n = 3/group) analyses were performed at two weeks post-implantation to detect the distribution and density of CD31. hi. EMCN. hi. endothelium. RNA sequencing analysis was performed using sorted CD31. hi. EMCN. hi. endothelial cells (n = 2/group). Osteoblast lineage cells expressing osterix (OSX) and osteopontin (OPN) were also detected with immunofluorescence. Mechanical pull-out testing (n = 12/group) was used at four weeks post-implantation to determine the strength of the bone-implant interface. After pull-out testing, the tissue attached to the implant surface was harvested. Whole mount immunofluorescent staining of OSX and OPN was performed to determine the amount of osteoblast lineage cells. Results. Flow cytometry revealed that anti-VEGFR treatment decreased CD31. hi. EMCN. hi. vascular endothelium in the peri-implant bone versus controls at two weeks post-implantation. This was confirmed by the decrease of CD31 and endomucin (EMCN) double-positive cells detected with immunofluorescence. In addition, treated mice had more OPN-positive cells in both peri-implant bone and tissue on the implant surface at two weeks and four weeks, respectively. More OSX-positive cells were present in peri-implant bone at two weeks. More importantly, anti-VEGFR treatment decreased the maximum load of pull-out testing compared with the control. Conclusion. VEGF pathway controls the coupling of angiogenesis and osteogenesis in orthopaedic implant osseointegration by affecting the formation of CD31. hi. EMCN. hi. endothelium. Cite this article: Bone Joint J 2019;101-B(7 Supple C):108–114


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 40 - 47
1 Jul 2019
Sporer S MacLean L Burger A Moric M

Aims. Our intention was to investigate if the highly porous biological fixation surfaces of a new 3D-printed total knee arthroplasty (TKA) achieved adequate fixation of the tibial and patellar components to the underlying bone. Patients and Methods. A total of 29 patients undergoing primary TKA consented to participate in this prospective cohort study. All patients received a highly porous tibial baseplate and metal-backed patella. Patient-reported outcomes measures were recorded and implant migration was assessed using radiostereometric analysis. Results. Patient function significantly improved by three months postoperatively (p < 0.001). Mean difference in maximum total point motion between 12 and 24 months was 0.021 mm (-0.265 to 0.572) for the tibial implant and 0.089 mm (-0.337 to 0.758) for the patellar implant. The rate of tibial and patellar migration was largest over the first six postoperative weeks, with no changes in mean tibia migration occurring after six months, and no changes in mean patellar migration occurring after six weeks. One patellar component showed a rapid rate of migration between 12 and 24 months. Conclusion. Biological fixation appears to occur reliably on the highly porous implant surface of the tibial baseplate and metal-backed patellar component. Rapid migration after 12 months was measured for one patellar component. Further investigation is required to assess the long-term stability of the 3D-printed components and to determine if the high-migrating components achieve fixation. Cite this article: Bone Joint J 2019;101-B(7 Supple C):40–47


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 49 - 58
1 Jun 2020
Mullaji A

Aims

The aims of this study were to determine the effect of osteophyte excision on deformity correction and soft tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA).

Methods

A total of 492 consecutive, cemented, cruciate-substituting TKAs performed for varus osteoarthritis were studied. After exposure and excision of both cruciates and menisci, it was noted from operative records the corrective interventions performed in each case. Knees in which no releases after the initial exposure, those which had only osteophyte excision, and those in which further interventions were performed were identified. From recorded navigation data, coronal and sagittal limb alignment, knee flexion range, and medial and lateral gap distances in maximum knee extension and 90° knee flexion with maximal varus and valgus stresses, were established, initially after exposure and excision of both cruciate ligaments, and then also at trialling. Knees were defined as ‘aligned’ if the hip-knee-ankle axis was between 177° and 180°, (0° to 3° varus) and ‘balanced’ if medial and lateral gaps in extension and at 90° flexion were within 2 mm of each other.


The Bone & Joint Journal
Vol. 99-B, Issue 11 | Pages 1467 - 1476
1 Nov 2017
van Hamersveld KT Marang-van de Mheen PJ Tsonaka R Valstar† ER Toksvig-Larsen S

Aims

The optimal method of tibial component fixation remains uncertain in total knee arthroplasty (TKA). Hydroxyapatite coatings have been applied to improve bone ingrowth in uncemented designs, but may only coat the directly accessible surface. As peri-apatite (PA) is solution deposited, this may increase the coverage of the implant surface and thereby fixation. We assessed the tibial component fixation of uncemented PA-coated TKAs versus cemented TKAs.

Patients and Methods

Patients were randomised to PA-coated or cemented TKAs. In 60 patients (30 in each group), radiostereometric analysis of tibial component migration was evaluated as the primary outcome at baseline, three months post-operatively and at one, two and five years. A linear mixed-effects model was used to analyse the repeated measurements.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 34 - 38
1 Jan 2007
Epinette J Manley MT

This study describes 146 primary total knee replacements, either fully or partially coated with hydroxyapatite of which 74 knees in 68 patients were available for clinical and radiological assessment at a mean of 11.2 years (10 to 15). The global failure rate was 1.37% and survival rate with mechanical failure as the end-point was 98.14%. Radiological assessment indicated intimate contact between bone and the hydroxyapatite coating. Over time the hydroxyapatite coating appears to encourage filling of interface gaps remaining after surgery. Our results compare favourably with those of series describing cemented or porous-coated knee replacements, and suggest that fixation with hydroxyapatite is a reliable option in primary total knee replacement.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 640 - 645
1 May 2005
Bartlett W Skinner JA Gooding CR Carrington RWJ Flanagan AM Briggs TWR Bentley G

Autologous chondrocyte implantation (ACI) is used widely as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum-cover technique include the use of porcine-derived type I/type III collagen as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) using a collagen bilayer seeded with chondrocytes. We have performed a prospective, randomised comparison of ACI-C and MACI for the treatment of symptomatic chondral defects of the knee in 91 patients, of whom 44 received ACI-C and 47 MACI grafts.

Both treatments resulted in improvement of the clinical score after one year. The mean modified Cincinnati knee score increased by 17.6 in the ACI-C group and 19.6 in the MACI group (p = 0.32). Arthroscopic assessments performed after one year showed a good to excellent International Cartilage Repair Society score in 79.2% of ACI-C and 66.6% of MACI grafts. Hyaline-like cartilage or hyaline-like cartilage with fibrocartilage was found in the biopsies of 43.9% of the ACI-C and 36.4% of the MACI grafts after one year. The rate of hypertrophy of the graft was 9% (4 of 44) in the ACI-C group and 6% (3 of 47) in the MACI group. The frequency of re-operation was 9% in each group.

We conclude that the clinical, arthroscopic and histological outcomes are comparable for both ACI-C and MACI. While MACI is technically attractive, further long-term studies are required before the technique is widely adopted.