Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1099 - 1105
1 Aug 2016
Weiser L Dreimann M Huber G Sellenschloh K Püschel K Morlock MM Rueger JM Lehmann W

Aims. Loosening of pedicle screws is a major complication of posterior spinal stabilisation, especially in the osteoporotic spine. Our aim was to evaluate the effect of cement augmentation compared with extended dorsal instrumentation on the stability of posterior spinal fixation. Materials and Methods. A total of 12 osteoporotic human cadaveric spines (T11-L3) were randomised by bone mineral density into two groups and instrumented with pedicle screws: group I (SHORT) separated T12 or L2 and group II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were augmented with cement unilaterally in each vertebra. Fatigue testing was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz) load with stepwise increasing peak force. Results. Augmentation showed no significant increase in the mean cycles to failure and fatigue force (SHORT p = 0.067; EXTENDED p = 0.239). Extending the instrumentation resulted in a significantly increased number of cycles to failure and a significantly higher fatigue force compared with the SHORT instrumentation (EXTENDED non-augmented + 76%, p < 0.001; EXTENDED augmented + 87%, p < 0.001). Conclusion. The stabilising effect of cement augmentation of pedicle screws might not be as beneficial as expected from biomechanical pull-out tests. Lengthening the dorsal instrumentation results in a much higher increase of stability during fatigue testing in the osteoporotic spine compared with cement augmentation. Cite this article: Bone Joint J 2016;98-B:1099–1105


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1352 - 1356
1 Oct 2008
Suh KT Park WW Kim S Cho HM Lee JS Lee JS

Between March 2000 and February 2006, we carried out a prospective study of 100 patients with a low-grade isthmic spondylolisthesis (Meyerding grade II or below), who were randomised to receive a single-level and instrumented posterior lumbar interbody fusion with either one or two cages. The minimum follow-up was for two years. At this stage 91 patients were available for review. A total of 47 patients received one cage (group 1) and 44 two cages (group 2). The clinical and radiological outcomes of the two groups were compared.

There were no significant differences between the two groups in terms of post-operative pain, Oswestry Disability Score, clinical results, complication rate, percentage of post-operative slip, anterior fusion rate or posterior fusion rate. On the other hand, the mean operating time was 144 minutes (100 to 240) for patients in group 1 and 167 minutes (110 to 270) for those in group 2 (p = 0.0002). The mean blood loss up to the end of the first post-operative day was 756 ml (510 to 1440) in group 1 and 817 ml (620 to 1730) in group 2 (p < 0.0001).

Our results suggest that an instrumented posterior lumbar interbody fusion performed with either one or two cages in addition to a bone graft around the cage has a low rate of complications and a high fusion rate. The clinical outcomes were good in most cases, regardless of whether one or two cages had been used.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 518 - 522
1 Apr 2005
Suh SW Shingade VU Lee SH Bae JH Park CE Song JY

Previous studies on the anatomy of the lumbar spine have not clarified the precise relationship of the origin of the lumbar roots to their corresponding discs or their angulation to the dural sac. We studied 33 cadavers (25 formalin-preserved and eight fresh-frozen) and their radiographs to determine these details.

All cadavers showed a gradual decrease in the angle of the nerve root from L1 to S1. The origin of the root was found to be below the corresponding disc for the L1 to L4 roots. In the formalin-preserved cadavers 8% of the L5 roots originated above, 64% below and 28% at the L4/L5 disc. In the fresh cadavers the values were 12.5%, 62.5% and 25%, respectively. For the S1 root 76% originated above and 24% at the L5-S1 disc in the formalin-preserved cadavers and 75% and 25%, respectively, in the fresh cadavers.

A herniated disc usually compresses the root before division of the root sleeve. Thus, compression of the thecal sac before the origin of the root sleeve is common for L1 to L5 whereas compression at the root sleeve is common for S1.

Our findings are of value in understanding the pathophysiology of prolapse of the disc and in preventing complications during surgery.