Dislocation following total hip arthroplasty (THA) is a well-known and potentially devastating complication. Clinicians have used many strategies in attempts to prevent dislocation since the introduction of THA. While the importance of postoperative care cannot be ignored, particular emphasis has been placed on preoperative planning in the prevention of dislocation. The strategies have progressed from more traditional approaches, including modular implants, the size of the femoral head, and augmentation of the offset, to newer concepts, including patient-specific component positioning combined with computer navigation, robotics, and the use of dual-mobility implants. As clinicians continue to pursue improved outcomes and reduced complications, these concepts will lay the foundation for future innovation in THA and ultimately improved outcomes. Cite this article:
Ceramic bearings have several desirable properties, such as resistance to wear, hardness, and biocompatibility, that favour it as an articulating surface in hip arthroplasty. However, ceramic fracture remains a concern. We have reviewed the contemporary literature, addressing the factors that can influence the incidence of ceramic bearing surface fracture. Cite this article:
Non-traumatic osteonecrosis of the femoral head
is a potentially devastating condition, the prevalence of which
is increasing. Many joint-preserving forms of treatment, both medical
and surgical, have been developed in an attempt to slow or reverse
its progression, as it usually affects young patients. However, it is important to evaluate the best evidence that is
available for the many forms of treatment considering the variation
in the demographics of the patients, the methodology and the outcomes
in the studies that have been published, so that it can be used
effectively. The purpose of this review, therefore, was to provide an up-to-date,
evidence-based guide to the management, both non-operative and operative,
of non-traumatic osteonecrosis of the femoral head. Cite this article:
Intravenous tranexamic acid (TXA) has been shown
to be effective in reducing blood loss and the need for transfusion
after joint replacement. Recently, there has been interest in applying
it topically before the closure of surgical wounds. This has the
advantages of ease of application, maximum concentration at the
site of bleeding, minimising its systemic absorption and, consequently,
concerns about possible side-effects. We conducted a systematic review and meta-analysis which included
14 randomised controlled trials (11 in knee replacement, two in
hip replacement and one in both) which investigated the effect of
topical TXA on blood loss and rates of transfusion. Topical TXA
significantly reduced the rate of blood transfusion (total knee
replacement: risk ratio (RR) 4.51; 95% confidence interval (CI):
3.02 to 6.72; p <
0.001 (nine trials, I2 = 0%); total
hip replacement: RR 2.56; 95% CI: 1.32 to 4.97, p = 0.004 (one trial)).
The rate of thromboembolic events with topical TXA were similar
to those found with a placebo. Indirect comparison of placebo-controlled
trials of topical and intravenous TXA indicates that topical administration
is superior to the intravenous route. In conclusion, topical TXA is an effective and safe method of
reducing the need for blood transfusion after total knee and hip
replacement. Further research is required to find its optimum dose
for topical use. Cite this article:
The recently published Prophylactic Antibiotic Regimens In Tumor Surgery (PARITY) trial found no benefit in extending antibiotic prophylaxis from 24 hours to five days after endoprosthetic reconstruction for lower limb bone tumours. PARITY is the first randomized controlled trial in orthopaedic oncology and is a huge step forward in understanding antibiotic prophylaxis. However, significant gaps remain, including questions around antibiotic choice, particularly in the UK, where cephalosporins are avoided due to concerns of Cite this article:
Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article:
Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI. Cite this article:
Aims. In 2013, we introduced a specialized, centralized, and interdisciplinary team in our institution that applied a standardized diagnostic and treatment algorithm for the management of prosthetic joint infections (PJIs). The hypothesis for this study was that the outcome of treatment would be improved using this approach. Patients and Methods. In a retrospective analysis with a standard postoperative follow-up, 95 patients with a PJI of the
Evaluating musculoskeletal conditions of the lower limb and understanding the pathophysiology of complex bone kinematics is challenging. Static images do not take into account the dynamic component of relative bone motion and muscle activation. Fluoroscopy and dynamic MRI have important limitations. Dynamic CT (4D-CT) is an emerging alternative that combines high spatial and temporal resolution, with an increased availability in clinical practice. 4D-CT allows simultaneous visualization of bone morphology and joint kinematics. This unique combination makes it an ideal tool to evaluate functional disorders of the musculoskeletal system. In the lower limb, 4D-CT has been used to diagnose femoroacetabular impingement, patellofemoral, ankle and subtalar joint instability, or reduced range of motion. 4D-CT has also been used to demonstrate the effect of surgery, mainly on patellar instability. 4D-CT will need further research and validation before it can be widely used in clinical practice. We believe, however, it is here to stay, and will become a reference in the diagnosis of lower limb conditions and the evaluation of treatment options. Cite this article:
Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics. Cite this article:
Injuries to the hamstring muscle complex are common in athletes, accounting for between 12% and 26% of all injuries sustained during sporting activities. Acute hamstring injuries often occur during sports that involve repetitive kicking or high-speed sprinting, such as American football, soccer, rugby, and athletics. They are also common in watersports, including waterskiing and surfing. Hamstring injuries can be career-threatening in elite athletes and are associated with an estimated risk of recurrence in between 14% and 63% of patients. The variability in prognosis and treatment of the different injury patterns highlights the importance of prompt diagnosis with magnetic resonance imaging (MRI) in order to classify injuries accurately and plan the appropriate management. Low-grade hamstring injuries may be treated with nonoperative measures including pain relief, eccentric lengthening exercises, and a graduated return to sport-specific activities. Nonoperative management is associated with highly variable times for convalescence and return to a pre-injury level of sporting function. Nonoperative management of high-grade hamstring injuries is associated with poor return to baseline function, residual muscle weakness and a high-risk of recurrence. Proximal hamstring avulsion injuries, high-grade musculotendinous tears, and chronic injuries with persistent weakness or functional compromise require surgical repair to enable return to a pre-injury level of sporting function and minimize the risk of recurrent injury. This article reviews the optimal diagnostic imaging methods and common classification systems used to guide the treatment of hamstring injuries. In addition, the indications and outcomes for both nonoperative and operative treatment are analyzed to provide an evidence-based management framework for these patients. Cite this article:
The mucopolysaccharidoses (MPS) are a group of
inherited lysosomal storage disorders with clinical manifestations relevant
to the orthopaedic surgeon. Our aim was to review the recent advances
in their management and the implications for surgical practice. The current literature about MPSs is summarised, emphasising
orthopaedic complications and their management. Recent advances in the diagnosis and management of MPSs include
the recognition of slowly progressive, late presenting subtypes,
developments in life-prolonging systemic treatment and potentially
new indications for surgical treatment. The outcomes of surgery
in these patients are not yet validated and some procedures have
a high rate of complications which differ from those in patients
who do not have a MPS. The diagnosis of a MPS should be considered in adolescents or
young adults with a previously unrecognised dysplasia of the
Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal. There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced. Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described. The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of robotic spinal surgery. Cite this article:
Aims. The diagnosis of periprosthetic joint infection can be difficult
due to the high rate of culture-negative infections. The aim of
this study was to assess the use of next-generation sequencing for
detecting organisms in synovial fluid. Materials and Methods. In this prospective, single-blinded study, 86 anonymized samples
of synovial fluid were obtained from patients undergoing aspiration
of the
The aim of this study was to quantify the risk of developing cancer from the exposure to radiation associated with surgery to correct limb deformities in children. A total of 35 children were studied. There were 19 girls and 16 boys. Their mean age was 11.9 years (2 to 18) at the time of surgery. Details of the radiological examinations were recorded during gradual correction using a Taylor Spatial Frame. The dose area product for each radiograph was obtained from the Computerised Radiology Information System database. The effective dose in millisieverts (mSv) was calculated using conversion coefficients for the anatomical area. The lifetime risk of developing cancer was calculated using government-approved Health Protection Agency reports, accounting for the age and gender of the child.Aims
Patients and Methods
The aim of this study was to assess the current evidence relating
to the benefits of virtual reality (VR) simulation in orthopaedic
surgical training, and to identify areas of future research. A literature search using the MEDLINE, Embase, and Google Scholar
databases was performed. The results’ titles, abstracts, and references
were examined for relevance.Aims
Materials and Methods
‘Big data’ is a term for data sets that are so
large or complex that traditional data processing applications are
inadequate. Billions of dollars have been spent on attempts to build predictive
tools from large sets of poorly controlled healthcare metadata.
Companies often sell reports at a physician or facility level based
on various flawed data sources, and comparative websites of ‘publicly
reported data’ purport to educate the public. Physicians should
be aware of concerns and pitfalls seen in such data definitions,
data clarity, data relevance, data sources and data cleaning when
evaluating analytic reports from metadata in health care. Cite this article:
Instability remains a challenging problem in both primary and
revision total hip arthroplasty (THA). Dual mobility components
confer increased stability, but there are concerns about the unique
complications associated with these designs, as well as the long-term
survivorship. We performed a systematic review of all English language articles
dealing with dual mobility THAs published between 2007 and 2016
in the MEDLINE and Embase electronic databases. A total of 54 articles
met inclusion criteria for the final analysis of primary and revision
dual mobility THAs and dual mobility THAs used in the treatment
of fractures of the femoral neck. We analysed the survivorship and
rates of aseptic loosening and of intraprosthetic and extra-articular
dislocation.Aims
Materials and Methods
Modern healthcare contracting is shifting the
responsibility for improving quality, enhancing community health
and controlling the total cost of care for patient populations from
payers to providers. Population-based contracting involves capitated
risk taken across an entire population, such that any included services
within the contract are paid for by the risk-bearing entity throughout
the term of the agreement. Under such contracts, a risk-bearing entity,
which may be a provider group, a hospital or another payer, administers
the contract and assumes risk for contractually defined services.
These contracts can be structured in various ways, from professional
fee capitation to full global per member per month diagnosis-based
risk. The entity contracting with the payer must have downstream
network contracts to provide the care and facilities that it has
agreed to provide. Population health is a very powerful model to
reduce waste and costs. It requires a deep understanding of the nuances
of such contracting and the appropriate infrastructure to manage
both networks and risk. Cite this article:
Episodic, or bundled payments, is a concept now
familiar to most in the healthcare arena, but the models are often
misunderstood. Under a traditional fee-for-service model, each provider
bills separately for their services which creates financial incentives
to maximise volumes. Under a bundled payment, a single entity, often
referred to as a convener (maybe the hospital, the physician group,
or a third party) assumes the risk through a payer contract for
all services provided within a defined episode of care, and receives
a single (bundled) payment for all services provided for that episode.
The time frame around the intervention is variable, but defined
in advance, as are included and excluded costs. Timing of the actual payment
in a bundle may either be before the episode occurs (prospective
payment model), or after the end of the episode through a reconciliation
(retrospective payment model). In either case, the defined costs
over the defined time frame are borne by the convener. Cite this article: