We sought to determine whether cobalt-chromium alloy (CoCr) femoral
stem tapers (trunnions) wear more than titanium (Ti) alloy stem
tapers (trunnions) when used in a large diameter (LD) metal-on-metal
(MoM) hip arthroplasty system. We performed explant analysis using validated methodology to
determine the volumetric material loss at the taper surfaces of
explanted LD CoCr MoM hip arthroplasties used with either a Ti alloy
(n = 28) or CoCr femoral stem (n = 21). Only 12/14 taper constructs
with a rough male taper surface and a nominal included angle close
to 5.666° were included. Multiple regression modelling was undertaken
using taper angle, taper roughness, bearing diameter (horizontal
lever arm) as independent variables. Material loss was mapped using
a coordinate measuring machine, profilometry and scanning electron
microscopy.Aims
Patients and Methods
There are limited published data detailing the volumetric material loss from tapers of conventional metal-on-polyethylene (MoP) total hip arthroplasties (THAs). Our aim was to address this by comparing the taper wear rates measured in an explanted cohort of the widely used Exeter THA with those measured in a group of metal-on-metal (MoM) THAs. We examined an existing retrieval database to identify all Exeter V40 and Universal MoP THAs. Volumetric wear analysis of the taper surfaces was conducted using previously validated methodology. These values were compared with those obtained from a series of MoM THAs using non-parametric statistical methodology. A number of patient and device variables were accounted for using multiple regression modelling.Aims
Patients and Methods
Heterotopic ossification (HO) of the hip after injury to the central nervous system can lead to joint ankylosis. Surgery is usually delayed to avoid recurrence, even if the functional status is affected. We report a consecutive series of patients with HO of the hip after injury to the central nervous system who required surgery in a single, specialised tertiary referral unit. As was usual practice, they all underwent CT to determine the location of the HO and to evaluate the density of the femoral head and articular surface. The outcome of surgery was correlated with the pre-, peri- and post-operative findings. In all, 183 hips (143 patients) were included of which 70 were ankylosed. A total of 25 peri-operative fractures of the femoral neck occurred, all of which arose in patients with ankylosed hips and were associated with intra-articular lesions in 18 and severe osteopenia of the femoral head in seven. All the intra-articular lesions were predicted by CT and strongly associated with post-operative complications. The loss of the range of movement before ankylosis is a more important factor than the maturity of the HO in deciding the timing of surgery. Early surgical intervention minimises the development of intra-articular pathology, osteoporosis and the resultant complications without increasing the risk of recurrence of HO.
Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model.