The aim of this study was to examine the loading
of the other joints of the lower limb in patients with unilateral osteoarthritis
(OA) of the knee. We recruited 20 patients with no other symptoms
or deformity in the lower limbs from a consecutive cohort of patients
awaiting knee replacement. Gait analysis and electromyographic recordings were
performed to determine moments at both knees and hips, and contraction
patterns in the medial and lateral quadriceps and hamstrings bilaterally.
The speed of gait was reduced in the group with OA compared with
the controls, but there were only minor differences in stance times
between the limbs. Patients with OA of the knee had significant
increases in adduction moment impulse at both knees and the contralateral
hip (adjusted p-values: affected knee: p <
0.01, unaffected knee
p = 0.048, contralateral hip p = 0.03), and significantly increased
muscular co-contraction bilaterally compared with controls (all
comparisons for co-contraction, p <
0.01). The other major weight-bearing joints are at risk from abnormal
biomechanics in patients with unilateral OA of the knee. Cite this article:
Injury to the common peroneal nerve was present in 14 of 55 patients (25%) with dislocation of the knee. All underwent ligament reconstruction. The most common presenting direction of the dislocation was anterior or anteromedial with associated disruption of both cruciate ligaments and the posterolateral structures of the knee. Palsy of the common peroneal nerve was present in 14 of 34 (41%) of these patients. Complete rupture of the nerve was seen in four patients and a lesion in continuity in ten. Three patients with lesions in continuity, but with less than 7 cm of the nerve involved, had complete recovery within six to 18 months. In the remaining seven with more extensive lesions, two regained no motor function, and one had only MRC grade-2 function. Four patients regained some weak dorsiflexion or eversion (MRC grade 3 or 4). Some sensory recovery occurred in all seven of these patients, but was incomplete. In summary, complete recovery occurred in three (21%) and partial recovery of useful motor function in four (29%). In the other seven (50%) no useful motor or sensory function returned.
We have investigated the changes in anterior laxity of the knee in response to direct electrical stimulation of eight normal and 45 reconstructed anterior cruciate ligaments (ACLs). In the latter, the mean time from reconstruction was 26.7 months (24 to 32). The ACL was stimulated electrically using a bipolar electrode probe during arthroscopy. Anterior laxity was examined with the knee flexed at 20° under a force of 134 N applied anteriorly to the tibia using the KT-2000 knee arthrometer before, during and after electrical stimulation. Anterior tibial translation in eight normal and 17 ACL-reconstructed knees was significantly decreased during stimulation, compared with that before stimulation. In 28 knees with reconstruction of the ACL, in 22 of which the grafts were found to have detectable somatosensory evoked potentials during stimulation, anterior tibial translation was not decreased. These findings suggest that the ACL-hamstring reflex arc in normal knees may contribute to the functional stability and that this may not be fully restored after some reconstructions of the ACL.