In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA)
A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75
Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate
Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a
We have studied damage to the tibial articular surface after replacement of the femoral surface in dogs. We inserted pairs of implants made of alumina, titanium and polyvinyl alcohol (PVA) hydrogel on titanium fibre mesh into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel
Composites of chondrocytes and polymerised fibrin were supplemented with insulin-like growth factor-I (IGF-I) during the arthroscopic repair of full-thickness cartilage defects in a model of extensive loss of cartilage in horses. Repairs facilitated with IGF-I and chondrocyte-fibrin
The use of a
We have developed a new drug-delivery system using reconstituted bone xenograft to treat chronic osteomyelitis. This material, which has the capabilities of osteoinduction and osteoconduction, was supplemented with up to 2000 times the minimum inhibitory concentration of gentamicin against Staphylococcus aureus to prepare a gentamicin-reconstituted bone xenograft-composite (G-RBX-C). In a rabbit model, we evaluated the release of gentamicin from this
The feasibility of bone transport with bone substitute and the factors which are essential for a successful bone transport are unknown. We studied six groups of 12 Japanese white rabbits. Groups A to D received cylindrical autologous bone segments and groups E and F hydroxyapatite prostheses. The periosteum was preserved in group A so that its segments had a blood supply, cells, proteins and scaffold. Group B had no blood supply. Group C had proteins and scaffold and group D had only scaffold. Group E received hydroxyapatite loaded with recombinant human bone morphogenetic protein-2 and group F had hydroxyapatite alone. Distraction osteogenesis occurred in groups A to C and E which had osteo-conductive transport segments loaded with osteo-inductive proteins. We conclude that scaffold and proteins are essential for successful bone transport, and that bone substitute can be used to regenerate bone.
We implanted titanium and carbon fibre-reinforced plastic (CFRP) femoral prostheses of the same dimensions into five prosthetic femora. An abductor jig was attached and a 1 kN load applied. This was repeated with five control femora. Digital image correlation was used to give a detailed two-dimensional strain map of the medial cortex of the proximal femur. Both implants caused stress shielding around the calcar. Distally, the titanium implant showed stress shielding, whereas the CFRP prosthesis did not produce a strain pattern which was statistically different from the controls. There was a reduction in strain beyond the tip of both the implants. This investigation indicates that use of the CFRP stem should avoid stress shielding in total hip replacement.
The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats. Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group. Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.
The complications of impaction bone grafting in revision hip replacement includes fracture of the femur and subsidence of the prosthesis. In this We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability.
When transferring tissue regenerative strategies
involving skeletal stem cells to human application, consideration needs
to be given to factors that may affect the function of the cells
that are transferred. Local anaesthetics are frequently used during
surgical procedures, either administered directly into the operative
site or infiltrated subcutaneously around the wound. The aim of
this study was to investigate the effects of commonly used local anaesthetics
on the morphology, function and survival of human adult skeletal
stem cells. Cells from three patients who were undergoing elective hip replacement
were harvested and incubated for two hours with 1% lidocaine, 0.5%
levobupivacaine or 0.5% bupivacaine hydrochloride solutions. Viability
was quantified using WST-1 and DNA assays. Viability and morphology
were further characterised using CellTracker Green/Ethidium Homodimer-1
immunocytochemistry and function was assessed by an alkaline phosphatase
assay. An additional group was cultured for a further seven days
to allow potential recovery of the cells after removal of the local
anaesthetic. A statistically significant and dose dependent reduction in cell
viability and number was observed in the cell cultures exposed to
all three local anaesthetics at concentrations of 25% and 50%, and
this was maintained even following culture for a further seven days. This study indicates that certain local anaesthetic agents in
widespread clinical use are deleterious to skeletal progenitor cells
when studied
An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p >
0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p <
0.05). The results for the area of new bone formation demonstrated no significant differences (p >
0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p >
0.05) and percentage ApaPore-bone contact (p >
0.05). The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.
The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture. Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem. Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.
We developed a new porous scaffold made from a synthetic polymer, poly(DL-lactide-co-glycolide) (PLG), and evaluated its use in the repair of cartilage. Osteochondral defects made on the femoral trochlear of rabbits were treated by transplantation of the PLG scaffold, examined histologically and compared with an untreated control group. Fibrous tissue was initially organised in an arcade array with poor cellularity at the articular surface of the scaffold. The tissue regenerated to cartilage at the articular surface. In the subchondral area, new bone formed and the scaffold was absorbed. The histological scores were significantly higher in the defects treated by the scaffold than in the control group (p <
0.05). Our findings suggest that in an animal model the new porous PLG scaffold is effective for repairing full-thickness osteochondral defects without cultured cells and growth factors.
Critical size defects in ovine tibiae, stabilised with intramedullary interlocking nails, were used to assess whether the addition of carboxymethylcellulose to the standard osteogenic protein-1 (OP-1/BMP-7) implant would affect the implant’s efficacy for bone regeneration. The biomaterial carriers were a ‘putty’ carrier of carboxymethylcellulose and bovine-derived type-I collagen (OPP) or the standard with collagen alone (OPC). These two treatments were also compared to “ungrafted” negative controls. Efficacy of regeneration was determined using radiological, biomechanical and histological evaluations after four months of healing. The defects, filled with OPP and OPC, demonstrated radiodense material spanning the defect after one month of healing, with radiographic evidence of recorticalisation and remodelling by two months. The OPP and OPC treatment groups had equivalent structural and material properties that were significantly greater than those in the ungrafted controls. The structural properties of the OPP- and OPC-treated limbs were equivalent to those of the contralateral untreated limb (p >
0.05), yet material properties were inferior (p <
0.05). Histopathology revealed no residual inflammatory response to the biomaterial carriers or OP-1. The OPP- and OPC-treated animals had 60% to 85% lamellar bone within the defect, and less than 25% of the regenerate was composed of fibrous tissue. The defects in the untreated control animals contained less than 40% lamellar bone and more than 60% was fibrous tissue, creating full cortical thickness defects. In our studies carboxymethylcellulose did not adversely affect the capacity of the standard OP-1 implant for regenerating bone.
This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery. Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens. There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures.
Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage. Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.
The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces Using confocal laser scanning microscopy, we identified a sixfold (p = 0.04) decrease in chondrocyte death following mechanical injury in the superficial zone of human articular cartilage exposed to hyperosmotic saline compared with normal saline. These data suggest that increasing the osmolarity of joint irrigation solutions used during open and arthroscopic articular surgery may reduce chondrocyte death from surgical injury and could promote integrative cartilage repair.