Periosteum is important for bone homoeostasis
through the release of bone morphogenetic proteins (BMPs) and their
effect on osteoprogenitor cells. Smoking has an adverse effect on
fracture healing and bone regeneration. The aim of this study was
to evaluate the effect of smoking on the expression of the BMPs
of human periosteum. Real-time polymerase chain reaction was performed
for BMP-2,-4,-6,-7 gene expression in periosteal samples obtained from
45 fractured bones (19 smokers, 26 non-smokers) and 60 non-fractured
bones (21 smokers, 39 non-smokers). A hierarchical model of BMP
gene expression (BMP-2 >
BMP-6 >
BMP-4 >
BMP-7) was demonstrated
in all samples. When smokers and non-smokers were compared, a remarkable
reduction in the gene expression of BMP-2, -4 and -6 was noticed
in smokers. The comparison of fracture and non-fracture groups demonstrated
a higher gene expression of BMP-2, -4 and -7 in the non-fracture
samples. Within the subgroups (fracture and non-fracture), BMP gene
expression in smokers was either lower but without statistical significance
in the majority of BMPs, or similar to that in non-smokers with
regard to BMP-4 in fracture and BMP-7 in non-fracture samples. In
smokers, BMP gene expression of human periosteum was reduced, demonstrating
the effect of smoking at the molecular level by reduction of mRNA
transcription of periosteal BMPs. Among the BMPs studied, BMP-2
gene expression was significantly
Osteoporosis is common and the health and financial
cost of fragility fractures is considerable. The burden of cardiovascular
disease has been reduced dramatically by identifying and targeting
those most at risk. A similar approach is potentially possible in
the context of fragility fractures. The World Health Organization
created and endorsed the use of FRAX, a fracture risk assessment
tool, which uses selected risk factors to calculate a quantitative,
patient-specific, ten-year risk of sustaining a fragility fracture.
Treatment can thus be based on this as well as on measured bone
mineral density. It may also be used to determine at-risk individuals,
who should undergo bone densitometry. FRAX has been incorporated
into the national osteoporosis guidelines of countries in the Americas,
Europe, the Far East and Australasia. The United Kingdom National
Institute for Health and Clinical Excellence also advocates its
use in their guidance on the assessment of the risk of fragility
fracture, and it may become an important tool to combat the health
challenges posed by fragility fractures.