Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1582 - 1588
1 Dec 2016
Dewar DC Lazaro LE Klinger CE Sculco PK Dyke JP Ni AY Helfet DL Lorich DG

Aims. We aimed to quantify the relative contributions of the medial femoral circumflex artery (MFCA) and lateral femoral circumflex artery (LFCA) to the arterial supply of the head and neck of the femur. Materials and Methods. We acquired ten cadaveric pelvises. In each of these, one hip was randomly assigned as experimental and the other as a matched control. The MFCA and LFCA were cannulated bilaterally. The hips were designated LFCA-experimental or MFCA-experimental and underwent quantitative MRI using a 2 mm slice thickness before and after injection of MRI-contrast diluted 3:1 with saline (15 ml Gd-DTPA) into either the LFCA or MFCA. The contralateral control hips had 15 ml of contrast solution injected into the root of each artery. Next, the MFCA and LFCA were injected with a mixture of polyurethane and barium sulfate (33%) and their extra-and intra-arterial course identified by CT imaging and dissection. Results. The MFCA made a greater contribution than the LFCA to the vascularity of the femoral head (MFCA 82%, LFCA 18%) and neck (MFCA 67%, LFCA 33%). However, the LFCA supplied 48% of the anteroinferior femoral neck overall. Conclusion. This study clearly shows that the MFCA is the major arterial supply to the femoral head and neck. Despite this, the LFCA supplies almost half the anteroinferior aspect of the femoral neck. Cite this article: Bone Joint J 2016;98-B:1582–8


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1453 - 1457
1 Nov 2013
Zlotorowicz M Czubak J Caban A Kozinski P Boguslawska-Walecka R

The femoral head receives blood supply mainly from the deep branch of the medial femoral circumflex artery (MFCA). In previous studies we have performed anatomical dissections of 16 specimens and subsequently visualised the arteries supplying the femoral head in 55 healthy individuals. In this further radiological study we compared the arterial supply of the femoral head in 35 patients (34 men and one woman, mean age 37.1 years (16 to 64)) with a fracture/dislocation of the hip with a historical control group of 55 hips. Using CT angiography, we identified the three main arteries supplying the femoral head: the deep branch and the postero-inferior nutrient artery both arising from the MFCA, and the piriformis branch of the inferior gluteal artery. It was possible to visualise changes in blood flow after fracture/dislocation. Our results suggest that blood flow is present after reduction of the dislocated hip. The deep branch of the MFCA was patent and contrast-enhanced in 32 patients, and the diameter of this branch was significantly larger in the fracture/dislocation group than in the control group (p = 0.022). In a subgroup of ten patients with avascular necrosis (AVN) of the femoral head, we found a contrast-enhanced deep branch of the MFCA in eight hips. Two patients with no blood flow in any of the three main arteries supplying the femoral head developed AVN. Cite this article: Bone Joint J 2013;95-B:1453–7


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1204 - 1213
1 Sep 2015
Lazaro LE Klinger CE Sculco PK Helfet DL Lorich DG

This study investigates and defines the topographic anatomy of the medial femoral circumflex artery (MFCA) terminal branches supplying the femoral head (FH). Gross dissection of 14 fresh–frozen cadaveric hips was undertaken to determine the extra and intracapsular course of the MFCA’s terminal branches. A constant branch arising from the transverse MFCA (inferior retinacular artery; IRA) penetrates the capsule at the level of the anteroinferior neck, then courses obliquely within the fibrous prolongation of the capsule wall (inferior retinacula of Weitbrecht), elevated from the neck, to the posteroinferior femoral head–neck junction. This vessel has a mean of five (three to nine) terminal branches, of which the majority penetrate posteriorly. Branches from the ascending MFCA entered the femoral capsular attachment posteriorly, running deep to the synovium, through the neck, and terminating in two branches. The deep MFCA penetrates the posterosuperior femoral capsular. Once intracapsular, it divides into a mean of six (four to nine) terminal branches running deep to the synovium, within the superior retinacula of Weitbrecht of which 80% are posterior. Our study defines the exact anatomical location of the vessels, arising from the MFCA and supplying the FH. The IRA is in an elevated position from the femoral neck and may be protected from injury during fracture of the femoral neck. We present vascular ‘danger zones’ that may help avoid iatrogenic vascular injury during surgical interventions about the hip.

Cite this article: Bone Joint J 2015;97-B:1204–13.


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 5 - 18
1 Jan 2014
Leunig M Ganz R

The use of joint-preserving surgery of the hip has been largely abandoned since the introduction of total hip replacement. However, with the modification of such techniques as pelvic osteotomy, and the introduction of intracapsular procedures such as surgical hip dislocation and arthroscopy, previously unexpected options for the surgical treatment of sequelae of childhood conditions, including developmental dysplasia of the hip, slipped upper femoral epiphysis and Perthes’ disease, have become available. Moreover, femoroacetabular impingement has been identified as a significant aetiological factor in the development of osteoarthritis in many hips previously considered to suffer from primary osteoarthritis.

As mechanical causes of degenerative joint disease are now recognised earlier in the disease process, these techniques may be used to decelerate or even prevent progression to osteoarthritis. We review the recent development of these concepts and the associated surgical techniques.

Cite this article: Bone Joint J 2014;96-B:5–18.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 10 | Pages 1293 - 1298
1 Oct 2007
Steffen R O’Rourke K Gill HS Murray DW

In 12 patients, we measured the oxygen concentration in the femoral head-neck junction during hip resurfacing through the anterolateral approach. This was compared with previous measurements made for the posterior approach. For the anterolateral approach, the oxygen concentration was found to be highly dependent upon the position of the leg, which was adjusted during surgery to provide exposure to the acetabulum and femoral head. Gross external rotation of the hip gave a significant decrease in oxygenation of the femoral head. Straightening the limb led to recovery in oxygen concentration, indicating that the blood supply was maintained. The oxygen concentration at the end of the procedure was not significantly different from that at the start.

The anterolateral approach appears to produce less disruption to the blood flow in the femoral head-neck junction than the posterior approach for patients undergoing hip resurfacing. This may be reflected subsequently in a lower incidence of fracture of the femoral neck and avascular necrosis.