Advertisement for orthosearch.org.uk
Results 1 - 50 of 53
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 510 - 516
1 Apr 2011
Sugata Y Sotome S Yuasa M Hirano M Shinomiya K Okawa A

Several bisphosphonates are now available for the treatment of osteoporosis. Porous hydroxyapatite/collagen (HA/Col) composite is an osteoconductive bone substitute which is resorbed by osteoclasts. The effects of the bisphosphonate alendronate on the formation of bone in porous HA/Col and its resorption by osteoclasts were evaluated using a rabbit model. Porous HA/Col cylinders measuring 6 mm in diameter and 8 mm in length, with a pore size of 100 μm to 500 μm and 95% porosity, were inserted into a defect produced in the lateral femoral condyles of 72 rabbits. The rabbits were divided into four groups based on the protocol of alendronate administration: the control group did not receive any alendronate, the pre group had alendronate treatment for three weeks prior to the implantation of the HA/Col, the post group had alendronate treatment following implantation until euthanasia, and the pre+post group had continuous alendronate treatment from three weeks prior to surgery until euthanasia. All rabbits were injected intravenously with either saline or alendronate (7.5 μg/kg) once a week. Each group had 18 rabbits, six in each group being killed at three, six and 12 weeks post-operatively. Alendronate administration suppressed the resorption of the implants. Additionally, the mineral densities of newly formed bone in the alendronate-treated groups were lower than those in the control group at 12 weeks post-operatively. Interestingly, the number of osteoclasts attached to the implant correlated with the extent of bone formation at three weeks.

In conclusion, the systemic administration of alendronate in our rabbit model at a dose-for-weight equivalent to the clinical dose used in the treatment of osteoporosis in Japan affected the mineral density and remodelling of bone tissue in implanted porous HA/Col composites.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom. Results. The greatest kinematic changes in the elbows were seen with the longest, + 4 mm, implant, which imposed a mean joint distraction of 2.8 mm in the radiohumeral joint and of 1.1 mm in the ulnohumeral joint, an increased mean varus angle of up to 2.4° for both the radius and the ulna, a mean shift of the radius of 2.0 mm in the ulnar direction, and a mean shift of the ulna of 1.0 mm posteriorly. Conclusion. The kinematics of the elbow deviated increasingly from those of the native joint with a 2 mm to a 4 mm lengthening of the radius. This confirms the importance of restoring the natural length of the radius when undertaking RHA. Cite this article: Bone Joint J 2024;106-B(10):1165–1175


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1133 - 1140
1 Oct 2024
Olsen Kipp J Petersen ET Falstie-Jensen T Frost Teilmann J Zejden A Jellesen Åberg R de Raedt S Thillemann TM Stilling M

Aims. This study aimed to quantify the shoulder kinematics during an apprehension-relocation test in patients with anterior shoulder instability (ASI) and glenoid bone loss using the radiostereometric analysis (RSA) method. Kinematics were compared with the patient’s contralateral healthy shoulder. Methods. A total of 20 patients with ASI and > 10% glenoid bone loss and a healthy contralateral shoulder were included. RSA imaging of the patient’s shoulders was performed during a repeated apprehension-relocation test. Bone volume models were generated from CT scans, marked with anatomical coordinate systems, and aligned with the digitally reconstructed bone projections on the RSA images. The glenohumeral joint (GHJ) kinematics were evaluated in the anteroposterior and superoinferior direction of: the humeral head centre location relative to the glenoid centre; and the humeral head contact point location on the glenoid. Results. During the apprehension test, the centre of the humeral head was 1.0 mm (95% CI 0.0 to 2.0) more inferior on the glenoid for the ASI shoulder compared with the healthy shoulder. Furthermore, the contact point of the ASI shoulder was 1.4 mm (95% CI 0.3 to 2.5) more anterior and 2.0 mm (95% CI 0.8 to 3.1) more inferior on the glenoid compared with the healthy shoulder. The contact point of the ASI shoulder was 1.2 mm (95% CI 0.2 to 2.6) more anterior during the apprehension test compared to the relocation test. Conclusion. The humeral head centre was located more inferior, and the GHJ contact point was located both more anterior and inferior during the apprehension test for the ASI shoulders than the healthy shoulders. Furthermore, the contact point displacement between the apprehension and relocation test revealed increased joint laxity for the ASI shoulder than the healthy shoulders. These results contribute to existing knowledge that ASI shoulders with glenoid bone loss may also suffer from inferior shoulder instability. Cite this article: Bone Joint J 2024;106-B(10):1133–1140


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 294 - 298
1 Feb 2021
Hadeed MM Prakash H Yarboro SR Weiss DB

Aims. The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. Methods. A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals. Results. The spiral and oblique fracture patterns withstood simulated weight-bearing with minimal displacement. The multifragmented model had early implant failure with breaking of the distal locking screws. The spiral fracture model shortened by a mean of 0.3 mm (SD 0.2), and developed a mean coronal angulation of 2.0° (SD 1.9°) and a mean sagittal angulation of 1.2° (SD 1.1°). On average, 88% of the shortening, 74% of the change in coronal alignment, and 75% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. The oblique fracture model shortened by a mean of 0.2 mm (SD 0.1) and developed a mean coronal angulation of 2.4° (SD 1.6°) and a mean sagittal angulation of 2.6° (SD 1.4°). On average, 44% of the shortening, 39% of the change in coronal alignment, and 79% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. Conclusion. For spiral and oblique fracture patterns, simulated weight-bearing resulted in a clinically acceptable degree of displacement. Most displacement occurred early in the test period, and the rate of displacement decreased over time. Based on this model, we offer evidence that early weight-bearing appears safe for well reduced oblique and spiral fractures, but not in multifragmented patterns that have poor bone contact. Cite this article: Bone Joint J 2021;103-B(2):294–298


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal stem cells adhered to the coated surfaces and differentiated towards osteoblasts, depositing calcium and expressing the bone marker protein, osteopontin. In the in vivo small animal bone healing model, the antibiotic sol-gel coated titanium (Ti)/HA rod led to osseointegration equivalent to that of the conventional HA-coated surface. Conclusion. In this study we report a new sol-gel technology that can release gentamicin from a bioceramic-coated cementless arthroplasty material. In vitro, local gentamicin levels are in excess of what can be achieved by antibiotic-loaded bone cement. In vivo, bone healing in an animal model is not impaired. This, thus, represents a biomaterial modification that may have the potential to protect at-risk patients from implant-related deep infection. Cite this article: Bone Joint J 2021;103-B(3):522–529


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims

This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height.

Methods

Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1303 - 1309
1 Oct 2018
Nodzo SR Chang C Carroll KM Barlow BT Banks SA Padgett DE Mayman DJ Jerabek SA

Aims. The aim of this study was to evaluate the accuracy of implant placement when using robotic assistance during total hip arthroplasty (THA). Patients and Methods. A total of 20 patients underwent a planned THA using preoperative CT scans and robotic-assisted software. There were nine men and 11 women (n = 20 hips) with a mean age of 60.8 years (. sd. 6.0). Pelvic and femoral bone models were constructed by segmenting both preoperative and postoperative CT scan images. The preoperative anatomical landmarks using the robotic-assisted system were matched to the postoperative 3D reconstructions of the pelvis. Acetabular and femoral component positions as measured intraoperatively and postoperatively were evaluated and compared. Results. The system reported accurate values for reconstruction of the hip when compared to those measured postoperatively using CT. The mean deviation from the executed overall hip length and offset were 1.6 mm (. sd. 2.9) and 0.5 mm (. sd. 3.0), respectively. Mean combined anteversion was similar and correlated between intraoperative measurements and postoperative CT measurements (32.5°, . sd. 5.9° versus 32.2°, . sd. 6.4°; respectively; R. 2. = 0.65; p < 0.001). There was a significant correlation between mean intraoperative (40.4°, . sd. 2.1°) acetabular component inclination and mean measured postoperative inclination (40.12°, . sd. 3.0°, R. 2. = 0.62; p < 0.001). There was a significant correlation between mean intraoperative version (23.2°, . sd. 2.3°), and postoperatively measured version (23.0°, . sd. 2.4°; R. 2. = 0.76; p < 0.001). Preoperative and postoperative femoral component anteversion were significantly correlated with one another (R. 2. = 0.64; p < 0.001). Three patients had CT scan measurements that differed substantially from the intraoperative robotic measurements when evaluating stem anteversion. Conclusion. This is the first study to evaluate the success of hip reconstruction overall using robotic-assisted THA. The overall hip reconstruction obtained in the operating theatre using robotic assistance accurately correlated with the postoperative component position assessed independently using CT based 3D modelling. Clinical correlation during surgery should continue to be practiced and compared with observed intraoperative robotic values. Cite this article: Bone Joint J 2018;100-B:1303–9


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 705 - 710
1 May 2015
Ozmeric A Yucens M Gultaç E Açar HI Aydogan NH Gül D Alemdaroglu KB

We hypothesised that the anterior and posterior walls of the body of the first sacral vertebra could be visualised with two different angles of inlet view, owing to the conical shape of the sacrum. Six dry male cadavers with complete pelvic rings and eight dry sacrums with K-wires were used to study the effect of canting (angling the C-arm) the fluoroscope towards the head in 5° increments from 10° to 55°. Fluoroscopic images were taken in each position. Anterior and posterior angles of inclination were measured between the upper sacrum and the vertical line on the lateral view. Three authors separately selected the clearest image for overlapping anterior cortices and the upper sacral canal in the cadaveric models. The dry bone and K-wire models were scored by the authors, being sure to check whether the K-wire was in or out. In the dry bone models the mean score of the relevant inlet position of the anterior or posterior inclination was 8.875 (standard deviation (. sd. ) 0.35), compared with the inlet position of the opposite inclination of –5.75 (. sd. 4.59). We found that two different inlet views should be used separately to evaluate the borders of the body of the sacrum using anterior and posterior inclination angles of the sacrum, during placement of iliosacral screws. Cite this article: Bone Joint J 2015;97-B:705–10


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 215 - 219
1 Feb 2023
Buchan SJ Lindisfarne EA Stabler A Barry M Gent ED Bennet S Aarvold A

Aims

Fixation techniques used in the treatment of slipped capital femoral epiphysis (SCFE) that allow continued growth of the femoral neck, rather than inducing epiphyseal fusion in situ, have the advantage of allowing remodelling of the deformity. The aims of this study were threefold: to assess whether the Free-Gliding (FG) SCFE screw prevents further slip; to establish whether, in practice, it enables lengthening and gliding; and to determine whether the age of the patient influences the extent of glide.

Methods

All patients with SCFE who underwent fixation using FG SCFE screws after its introduction at our institution, with minimum three years’ follow-up, were reviewed retrospectively as part of ongoing governance. All pre- and postoperative radiographs were evaluated. The demographics of the patients, the grade of slip, the extent of lengthening of the barrel of the screw and the restoration of Klein’s line were recorded. Subanalysis was performed according to sex and age.


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 261 - 268
1 Mar 2023
Ruhr M Huber G Niki Y Lohner L Ondruschka B Morlock MM

Aims

The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure.

Methods

Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1355 - 1361
1 Oct 2011
Bollars P Luyckx J Innocenti B Labey L Victor J Bellemans J

High-flexion total knee replacement (TKR) designs have been introduced to improve flexion after TKR. Although the early results of such designs were promising, recent literature has raised concerns about the incidence of early loosening of the femoral component. We compared the minimum force required to cause femoral component loosening for six high-flexion and six conventional TKR designs in a laboratory experiment. Each TKR design was implanted in a femoral bone model and placed in a loading frame in 135° of flexion. Loosening of the femoral component was induced by moving the tibial component at a constant rate of displacement while maintaining the same angle of flexion. A stereophotogrammetric system registered the relative movement between the femoral component and the underlying bone until loosening occurred. Compared with high-flexion designs, conventional TKR designs required a significantly higher force before loosening occurred (p < 0.001). High-flexion designs with closed box geometry required significantly higher loosening forces than high-flexion designs with open box geometry (p = 0.0478). The presence of pegs further contributed to the fixation strength of components. We conclude that high-flexion designs have a greater risk for femoral component loosening than conventional TKR designs. We believe this is attributable to the absence of femoral load sharing between the prosthetic component and the condylar bone during flexion


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1339 - 1347
1 Oct 2013
Scott CEH Eaton MJ Nutton RW Wade FA Pankaj P Evans SL

As many as 25% to 40% of unicompartmental knee replacement (UKR) revisions are performed for pain, a possible cause of which is proximal tibial strain. The aim of this study was to examine the effect of UKR implant design and material on cortical and cancellous proximal tibial strain in a synthetic bone model. Composite Sawbone tibiae were implanted with cemented UKR components of different designs, either all-polyethylene or metal-backed. The tibiae were subsequently loaded in 500 N increments to 2500 N, unloading between increments. Cortical surface strain was measured using a digital image correlation technique. Cancellous damage was measured using acoustic emission, an engineering technique that detects sonic waves (‘hits’) produced when damage occurs in material. Anteromedial cortical surface strain showed significant differences between implants at 1500 N and 2500 N in the proximal 10 mm only (p < 0.001), with relative strain shielding in metal-backed implants. Acoustic emission showed significant differences in cancellous bone damage between implants at all loads (p = 0.001). All-polyethylene implants displayed 16.6 times the total number of cumulative acoustic emission hits as controls. All-polyethylene implants also displayed more hits than controls at all loads (p < 0.001), more than metal-backed implants at loads ≥ 1500 N (p < 0.001), and greater acoustic emission activity on unloading than controls (p = 0.01), reflecting a lack of implant stiffness. All-polyethylene implants were associated with a significant increase in damage at the microscopic level compared with metal-backed implants, even at low loads. All-polyethylene implants should be used with caution in patients who are likely to impose large loads across their knee joint. . Cite this article: Bone Joint J 2013;95-B:1339–47


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 490 - 494
1 Apr 2007
Arimitsu S Murase T Hashimoto J Oka K Sugamoto K Yoshikawa H Moritomo H

We have measured the three-dimensional patterns of carpal deformity in 20 wrists in 20 rheumatoid patients in which the carpal bones were shifted ulnarwards on plain radiography. Three-dimensional bone models of the carpus and radius were created by computerised tomography with the wrist in the neutral position. The location of the centroids and rotational angle of each carpal bone relative to the radius were calculated and compared with those of ten normal wrists. In the radiocarpal joint, the proximal row was flexed and the centroids of all carpal bones translocated in an ulnar, proximal and volar direction with loss of congruity. In the midcarpal joint, the distal row was extended and congruity generally well preserved. These findings may facilitate more positive use of radiocarpal fusion alone for the deformed rheumatoid wrist


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 875 - 883
1 Jul 2022
Mills K Wymenga AB van Hellemondt GG Heesterbeek PJC

Aims

Both the femoral and tibial component are usually cemented at revision total knee arthroplasty (rTKA), while stems can be added with either cemented or press-fit (hybrid) fixation. The aim of this study was to compare the long-term stability of rTKA with cemented and press-fitted stems, using radiostereometric analysis (RSA).

Methods

This is a follow-up of a randomized controlled trial, initially involving 32 patients, of whom 19 (nine cemented, ten hybrid) were available for follow-up ten years postoperatively, when further RSA measurements were made. Micromotion of the femoral and tibial components was assessed using model-based RSA software (RSAcore). The clinical outcome was evaluated using the Knee Society Score (KSS), the Knee injury and Osteoarthritis Outcome Score (KOOS), and visual analogue scale (pain and satisfaction).


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 958 - 965
1 Jul 2008
Leong JJH Leff DR Das A Aggarwal R Reilly P Atkinson HDE Emery RJ Darzi AW

The aim of this study was to validate the use of three models of fracture fixation in the assessment of technical skills. We recruited 21 subjects (six experts, seven intermediates, and eight novices) to perform three procedures: application of a dynamic compression plate on a cadaver porcine model, insertion of an unreamed tibial intramedullary nail, and application of a forearm external fixator, both on synthetic bone models. The primary outcome measures were the Objective Structural Assessment of technical skills global rating scale on video recordings of the procedures which were scored by two independent expert observers, and the hand movements of the surgeons which were analysed using the Imperial College Surgical Assessment Device. The video scores were significantly different for the three groups in all three procedures (p < 0.05), with excellent inter-rater reliability (α = 0.88). The novice and intermediate groups specifically were significantly different in their performance with dynamic compression plate and intramedullary nails (p < 0.05). Movement analysis distinguished between the three groups in the dynamic compression plate model, but a ceiling effect was demonstrated in the intramedullary nail and external fixator procedures, where intermediates and experts performed to comparable standards (p > 0.6). A total of 85% (18 of 21) of the subjects found the dynamic compression model and 57% (12 of 21) found all the models acceptable tools of assessment. This study has validated a low-cost, high-fidelity porcine dynamic compression plate model using video rating scores for skills assessment and movement analysis. It has also demonstrated that Synbone models for the application of and intramedullary nail and an external fixator are less sensitive and should be improved for further assessment of surgical skills in trauma. The availability of valid objective tools of assessment of surgical skills allows further studies into improving methods of training


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 6 | Pages 975 - 981
1 Nov 1994
Field R Buchanan J Copplemans M Aichroth P

Between 1980 and 1988, displacement bone-marrow transplantation was performed on 25 children with Hurler's syndrome (type-1 mucopolysaccharidosis). We describe the musculoskeletal development of 11 of the 12 surviving children and the orthopaedic procedures undertaken to treat progressive thoracolumbar kyphosis, hip subluxation and carpal tunnel syndrome. We found abnormal bone modelling, focal failures of ossification and an avascular disorder of the femoral head in every patient and offer an explanation for these phenomena. Increasing valgus deformity of the knees and progressive generalised myopathy caused loss of mobility as the children entered adolescence. The benefit of bone-marrow transplantation as a treatment for the skeletal disorders of Hurler's syndrome is limited by the poor penetration of the musculoskeletal tissues by the enzyme derived from the leucocytes


The Journal of Bone & Joint Surgery British Volume
Vol. 43-B, Issue 4 | Pages 700 - 716
1 Nov 1961
Solomon L

1. The widespread deformities commonly associated with diaphysial aclasis have been studied in seventy-six patients. Apart from the adaptations of growth due to pressure by neighbouring exostoses, all the deformities of the tubular bones can be explained in terms of the same underlying factor–diminished length of the bones affected by the disease. 2. When the condition first manifests itself the future pattern of bone growth is completely unpredictable except in so far as it is known that the more actively growing ends of the long bones are the more severely affected in each case. It has also been shown in this series that, in general, the bones with the smallest cross-sectional area at the epiphysial plates (such as the ulna and the fibula) are the most severely shortened of all. 3. The cause of this disturbance of growth is still unknown, but there is an undoubted relationship between the presence of exostoses or thickening of the metaphysial region and shortening of the bone involved. 4. The phenomena of migrating exostoses and disappearing exostoses are also described and are shown to be examples of the normal process of bone modelling applied in special circumstances. 5. Although the importance of the cartilage-capped exostoses is not underestimated, it is hoped that this study will stimulate further work on what is probably the basic defect in this disease–namely, the disturbance of bone growth


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1326 - 1327
1 Aug 2021
Craven J Haddad FS Perry DC


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1497 - 1504
1 Sep 2021
Rotman D Ariel G Rojas Lievano J Schermann H Trabelsi N Salai M Yosibash Z Sternheim A

Aims

Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients.

Methods

A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS).


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1200 - 1209
14 Sep 2020
Miyamura S Lans J He JJ Murase T Jupiter JB Chen NC

Aims

We quantitatively compared the 3D bone density distributions on CT scans performed on scaphoid waist fractures subacutely that went on to union or nonunion, and assessed whether 2D CT evaluations correlate with 3D bone density evaluations.

Methods

We constructed 3D models from 17 scaphoid waist fracture CTs performed between four to 18 weeks after fracture that did not unite (nonunion group), 17 age-matched scaphoid waist fracture CTs that healed (union group), and 17 age-matched control CTs without injury (control group). We measured the 3D bone density for the distal and proximal fragments relative to the triquetrum bone density and compared findings among the three groups. We then performed bone density measurements using 2D CT and evaluated the correlation with 3D bone densities. We identified the optimal cutoff with diagnostic values of the 2D method to predict nonunion with receiver operating characteristic (ROC) curves.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 677 - 683
1 May 2014
Greenberg A Berenstein Weyel T Sosna J Applbaum J Peyser A

Osteoid osteoma is treated primarily by radiofrequency (RF) ablation. However, there is little information about the distribution of heat in bone during the procedure and its safety. We constructed a model of osteoid osteoma to assess the distribution of heat in bone and to define the margins of safety for ablation. Cavities were drilled in cadaver bovine bones and filled with a liver homogenate to simulate the tumour matrix. Temperature-sensing probes were placed in the bone in a radial fashion away from the cavities. RF ablation was performed 107 times in tumours < 10 mm in diameter (72 of which were in cortical bone, 35 in cancellous bone), and 41 times in cortical bone with models > 10 mm in diameter. Significantly higher temperatures were found in cancellous bone than in cortical bone (p <  0.05). For lesions up to 10 mm in diameter, in both bone types, the temperature varied directly with the size of the tumour (p < 0.05), and inversely with the distance from it. Tumours of > 10 mm in diameter showed a trend similar to those of smaller lesions. No temperature rise was seen beyond 12 mm from the edge of a cortical tumour of any size. Formulae were developed to predict the expected temperature in the bone during ablation. Cite this article: Bone Joint J 2014; 96-B:677–83


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 59 - 65
1 Jun 2020
Kwon Y Arauz P Peng Y Klemt C

Aims

The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design.

Methods

A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1292 - 1297
1 Sep 2005
Lietman SA Inoue N Rafiee B Deitz LW Chao EYS

We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone. Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group. These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1585 - 1592
1 Dec 2019
Logishetty K Rudran B Cobb JP

Aims

Arthroplasty skills need to be acquired safely during training, yet operative experience is increasingly hard to acquire by trainees. Virtual reality (VR) training using headsets and motion-tracked controllers can simulate complex open procedures in a fully immersive operating theatre. The present study aimed to determine if trainees trained using VR perform better than those using conventional preparation for performing total hip arthroplasty (THA).

Patients and Methods

A total of 24 surgical trainees (seven female, 17 male; mean age 29 years (28 to 31)) volunteered to participate in this observer-blinded 1:1 randomized controlled trial. They had no prior experience of anterior approach THA. Of these 24 trainees, 12 completed a six-week VR training programme in a simulation laboratory, while the other 12 received only conventional preparatory materials for learning THA. All trainees then performed a cadaveric THA, assessed independently by two hip surgeons. The primary outcome was technical and non-technical surgical performance measured by a THA-specific procedure-based assessment (PBA). Secondary outcomes were step completion measured by a task-specific checklist, error in acetabular component orientation, and procedure duration.


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 512 - 521
1 May 2019
Carter TH Duckworth AD White TO

Abstract

The medial malleolus, once believed to be the primary stabilizer of the ankle, has been the topic of conflicting clinical and biomechanical data for many decades. Despite the relevant surgical anatomy being understood for almost 40 years, the optimal treatment of medial malleolar fractures remains unclear, whether the injury occurs in isolation or as part of an unstable bi- or trimalleolar fracture configuration. Traditional teaching recommends open reduction and fixation of medial malleolar fractures that are part of an unstable injury. However, there is recent evidence to suggest that nonoperative management of well-reduced fractures may result in equivalent outcomes, but without the morbidity associated with surgery. This review gives an update on the relevant anatomy and classification systems for medial malleolar fractures and an overview of the current literature regarding their management, including surgical approaches and the choice of implants.

Cite this article: Bone Joint J 2019;101-B:512–521.


The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 50 - 55
1 Jan 2018
Kono K Tomita T Futai K Yamazaki T Tanaka S Yoshikawa H Sugamoto K

Aims

In Asia and the Middle-East, people often flex their knees deeply in order to perform activities of daily living. The purpose of this study was to investigate the 3D kinematics of normal knees during high-flexion activities. Our hypothesis was that the femorotibial rotation, varus-valgus angle, translations, and kinematic pathway of normal knees during high-flexion activities, varied according to activity.

Materials and Methods

We investigated the in vivo kinematics of eight normal knees in four male volunteers (mean age 41.8 years; 37 to 53) using 2D and 3D registration technique, and modelled the knees with a computer aided design program. Each subject squatted, kneeled, and sat cross-legged. We evaluated the femoral rotation and varus-valgus angle relative to the tibia and anteroposterior translation of the medial and lateral side, using the transepicodylar axis as our femoral reference relative to the perpendicular projection on to the tibial plateau. This method evaluates the femur medially from what has elsewhere been described as the extension facet centre, and differs from the method classically applied.


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1182 - 1186
1 Sep 2018
Werner BS Chaoui J Walch G

Aims

Scapular notching is a frequently observed radiographic phenomenon in reverse shoulder arthroplasty (RSA), signifying impingement of components. The purposes of this study were to evaluate the effect of glenoid component size and glenosphere type on impingement-free range of movement (ROM) for extension and internal and external rotation in a virtual RSA model, and to determine the optimal configuration to reduce the incidence of friction-type scapular notching.

Materials and Methods

Preoperative CT scans obtained in 21 patients (three male, 18 female) with primary osteoarthritis were analyzed using modelling software. Two concurrent factors were tested for impingement-free ROM and translation of the centre of rotation: glenosphere diameter (36 mm vs 39 mm) and type (centred, 2 mm inferior eccentric offset, 10° inferior tilt).


The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 68 - 74
1 Jan 2019
Klemt C Toderita D Nolte D Di Federico E Reilly P Bull AMJ

Aims

Patients with recurrent anterior dislocation of the shoulder commonly have an anterior osseous defect of the glenoid. Once the defect reaches a critical size, stability may be restored by bone grafting. The critical size of this defect under non-physiological loading conditions has previously been identified as 20% of the length of the glenoid. As the stability of the shoulder is load-dependent, with higher joint forces leading to a loss of stability, the aim of this study was to determine the critical size of an osseous defect that leads to further anterior instability of the shoulder under physiological loading despite a Bankart repair.

Patients and Methods

Two finite element (FE) models were used to determine the risk of dislocation of the shoulder during 30 activities of daily living (ADLs) for the intact glenoid and after creating anterior osseous defects of increasing magnitudes. A Bankart repair was simulated for each size of defect, and the shoulder was tested under loading conditions that replicate in vivo forces during these ADLs. The critical size of a defect was defined as the smallest osseous defect that leads to dislocation.


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1202 - 1207
1 Sep 2016
Jeyaseelan L Chandrashekar S Mulligan A Bosman HA Watson AJS

Aims

The mainstay of surgical correction of hallux valgus is first metatarsal osteotomy, either proximally or distally. We present a technique of combining a distal chevron osteotomy with a proximal opening wedge osteotomy, for the correction of moderate to severe hallux valgus.

Patients and Methods

We reviewed 45 patients (49 feet) who had undergone double osteotomy. Outcome was assessed using the American Orthopaedic Foot and Ankle Society (AOFAS) and the Short Form (SF) -36 Health Survey scores. Radiological measurements were undertaken to assess the correction.

The mean age of the patients was 60.8 years (44.2 to 75.3). The mean follow-up was 35.4 months (24 to 51).


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1214 - 1219
1 Sep 2015
Loh BW Stokes CM Miller BG Page RS

There is an increased risk of fracture following osteoplasty of the femoral neck for cam-type femoroacetabular impingement (FAI). Resection of up to 30% of the anterolateral head–neck junction has previously been considered to be safe, however, iatrogenic fractures have been reported with resections within these limits. We re-evaluated the amount of safe resection at the anterolateral femoral head–neck junction using a biomechanically consistent model.

In total, 28 composite bones were studied in four groups: control, 10% resection, 20% resection and 30% resection. An axial load was applied to the adducted and flexed femur. Peak load, deflection at time of fracture and energy to fracture were assessed using comparison groups.

There was a marked difference in the mean peak load to fracture between the control group and the 10% resection group (p < 0.001). The control group also tolerated significantly more deflection before failure (p < 0.04). The mean peak load (p = 0.172), deflection (p = 0.547), and energy to fracture (p = 0.306) did not differ significantly between the 10%, 20%, and 30% resection groups.

Any resection of the anterolateral quadrant of the femoral head–neck junction for FAI significantly reduces the load-bearing capacity of the proximal femur. After initial resection of cortical bone, there is no further relevant loss of stability regardless of the amount of trabecular bone resected.

Based on our findings we recommend any patients who undergo anterolateral femoral head–neck junction osteoplasty should be advised to modify their post-operative routine until cortical remodelling occurs to minimise the subsequent fracture risk.

Cite this article: Bone Joint J 2015;97-B:1214–19.


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 237 - 241
1 Feb 2014
Miyake J Shimada K Oka K Tanaka H Sugamoto K Yoshikawa H Murase T

We retrospectively assessed the value of identifying impinging osteophytes using dynamic computer simulation of CT scans of the elbow in assisting their arthroscopic removal in patients with osteoarthritis of the elbow. A total of 20 patients were treated (19 men and one woman, mean age 38 years (19 to 55)) and followed for a mean of 25 months (24 to 29). We located the impinging osteophytes dynamically using computerised three-dimensional models of the elbow based on CT data in three positions of flexion of the elbow. These were then removed arthroscopically and a capsular release was performed.

The mean loss of extension improved from 23° (10° to 45°) pre-operatively to 9° (0° to 25°) post-operatively, and the mean flexion improved from 121° (80° to 140°) pre-operatively to 130° (110° to 145°) post-operatively. The mean Mayo Elbow Performance Score improved from 62 (30 to 85) to 95 (70 to 100) post-operatively. All patients had pain in the elbow pre-operatively which disappeared or decreased post-operatively. According to their Mayo scores, 14 patients had an excellent clinical outcome and six a good outcome; 15 were very satisfied and five were satisfied with their post-operative outcome.

We recommend this technique in the surgical management of patients with osteoarthritis of the elbow.

Cite this article: Bone Joint J 2014;96-B:237–41.


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 890 - 898
1 Jul 2015
Renkawitz T Weber M Springorum H Sendtner E Woerner M Ulm K Weber T Grifka J

We report the kinematic and early clinical results of a patient- and observer-blinded randomised controlled trial in which CT scans were used to compare potential impingement-free range of movement (ROM) and acetabular component cover between patients treated with either the navigated ‘femur-first’ total hip arthroplasty (THA) method (n = 66; male/female 29/37, mean age 62.5 years; 50 to 74) or conventional THA (n = 69; male/female 35/34, mean age 62.9 years; 50 to 75). The Hip Osteoarthritis Outcome Score, the Harris hip score, the Euro-Qol-5D and the Mancuso THA patient expectations score were assessed at six weeks, six months and one year after surgery. A total of 48 of the patients (84%) in the navigated ‘femur-first’ group and 43 (65%) in the conventional group reached all the desirable potential ROM boundaries without prosthetic impingement for activities of daily living (ADL) in flexion, extension, abduction, adduction and rotation (p = 0.016). Acetabular component cover and surface contact with the host bone were > 87% in both groups. There was a significant difference between the navigated and the conventional groups’ Harris hip scores six weeks after surgery (p = 0.010). There were no significant differences with respect to any clinical outcome at six months and one year of follow-up. The navigated ‘femur-first’ technique improves the potential ROM for ADL without prosthetic impingement, although there was no observed clinical difference between the two treatment groups.

Cite this article: Bone Joint J 2015; 97-B:890–8.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1406 - 1409
1 Oct 2013
Wähnert D Lange JH Schulze M Gehweiler D Kösters C Raschke MJ

The augmentation of fixation with bone cement is increasingly being used in the treatment of severe osteoporotic fractures. We investigated the influence of bone quality on the mechanics of augmentation of plate fixation in a distal femoral fracture model (AO 33 A3 type). Eight osteoporotic and eight non-osteoporotic femoral models were randomly assigned to either an augmented or a non-augmented group. Fixation was performed using a locking compression plate. In the augmented group additionally 1 ml of bone cement was injected into the screw hole before insertion of the screw. Biomechanical testing was performed in axial sinusoidal loading. Augmentation significantly reduced the cut-out distance in the osteoporotic models by about 67% (non-augmented mean 0.30 mm (sd 0.08) vs augmented 0.13 mm (sd 0.06); p = 0.017). There was no statistical reduction in this distance following augmentation in the non-osteoporotic models (non-augmented mean 0.15 mm (sd 0.02) vs augmented 0.15 mm (sd 0.07); p = 0.915). In the osteoporotic models, augmentation significantly increased stability (p = 0.017).

Cite this article: Bone Joint J 2013;95-B:1406–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 713 - 718
1 May 2012
Kaiser MM Zachert G Wendlandt R Eggert R Stratmann C Gros N Schulze-Hessing M Rapp M

Elastic stable intramedullary nailing (ESIN) is generally acknowledged to be the treatment of choice for displaced diaphyseal femoral fractures in children over the age of three years, although complication rates of up to 50% are described. Pre-bending the nails is recommended, but there are no published data to support this. Using synthetic bones and a standardised simulated fracture, we performed biomechanical testing to determine the influence on the stability of the fracture of pre-bending the nails before implantation. Standard ESIN was performed on 24 synthetic femoral models with a spiral fracture. In eight cases the nails were inserted without any pre-bending, in a further eight cases they were pre-bent to 30° and in the last group of eight cases they were pre-bent to 60°. Mechanical testing revealed that pre-bending to 60° produced a significant increase in the stiffness or stability of the fracture. Pre-bending to 60° showed a significant positive influence on the stiffness compared with unbent nails. Pre-bending to 30° improved stiffness only slightly.

These findings validate the recommendations for pre-bending, but the degree of pre-bend should exceed 30°. Adopting higher degrees of pre-bending should improve stability in spiral fractures and reduce the complications of varus deformity and shortening.


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1201 - 1203
1 Sep 2013
Tsukeoka T Tsuneizumi Y Lee TH

We performed a CT-based computer simulation study to determine how the relationship between any inbuilt posterior slope in the proximal tibial osteotomy and cutting jig rotational orientation errors affect tibial component alignment in total knee replacement. Four different posterior slopes (3°, 5°, 7° and 10°), each with a rotational error of 5°, 10°, 15°, 20°, 25° or 30°, were simulated. Tibial cutting block malalignment of 20° of external rotation can produce varus malalignment of 2.4° and 3.5° with a 7° and a 10° sloped cutting jig, respectively. Care must be taken in orientating the cutting jig in the sagittal plane when making a posterior sloped proximal tibial osteotomy in total knee replacement.

Cite this article: Bone Joint J 2013;95-B:1201–3.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1259 - 1264
1 Sep 2011
Wähnert D Windolf M Brianza S Rothstock S Radtke R Brighenti V Schwieger K

We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm3) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations.

In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11 | Pages 1457 - 1461
1 Nov 2012
Krishnan SP Dawood A Richards R Henckel J Hart AJ

Improvements in the surgical technique of total knee replacement (TKR) are continually being sought. There has recently been interest in three-dimensional (3D) pre-operative planning using magnetic resonance imaging (MRI) and CT. The 3D images are increasingly used for the production of patient-specific models, surgical guides and custom-made implants for TKR.

The users of patient-specific instrumentation (PSI) claim that they allow the optimum balance of technology and conventional surgery by reducing the complexity of conventional alignment and sizing tools. In this way the advantages of accuracy and precision claimed by computer navigation techniques are achieved without the disadvantages of additional intra-operative inventory, new skills or surgical time.

This review describes the terminology used in this area and debates the advantages and disadvantages of PSI.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 865 - 874
1 Jul 2012
Mills LA Simpson AHRW

This review is aimed at clinicians appraising preclinical trauma studies and researchers investigating compromised bone healing or novel treatments for fractures. It categorises the clinical scenarios of poor healing of fractures and attempts to match them with the appropriate animal models in the literature.

We performed an extensive literature search of animal models of long bone fracture repair/nonunion and grouped the resulting studies according to the clinical scenario they were attempting to reflect; we then scrutinised them for their reliability and accuracy in reproducing that clinical scenario.

Models for normal fracture repair (primary and secondary), delayed union, nonunion (atrophic and hypertrophic), segmental defects and fractures at risk of impaired healing were identified. Their accuracy in reflecting the clinical scenario ranged greatly and the reliability of reproducing the scenario ranged from 100% to 40%.

It is vital to know the limitations and success of each model when considering its application.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 852 - 857
1 Jul 2006
Board TN Rooney P Kearney JN Kay PR


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 549 - 556
1 Apr 2007
Udofia I Liu F Jin Z Roberts P Grigoris P

Finite element analysis was used to examine the initial stability after hip resurfacing and the effect of the procedure on the contact mechanics at the articulating surfaces. Models were created with the components positioned anatomically and loaded physiologically through major muscle forces. Total micromovement of less than 10 μm was predicted for the press-fit acetabular components models, much below the 50 μm limit required to encourage osseointegration. Relatively high compressive acetabular and contact stresses were observed in these models. The press-fit procedure showed a moderate influence on the contact mechanics at the bearing surfaces, but produced marked deformation of the acetabular components. No edge contact was predicted for the acetabular components studied.

It is concluded that the frictional compressive stresses generated by the 1 mm to 2 mm interference-fit acetabular components, together with the minimal micromovement, would provide adequate stability for the implant, at least in the immediate post-operative situation.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 10 | Pages 1281 - 1286
1 Oct 2009
Olsen M Davis ET Chiu M Gamble P Tumia N Boyle RA Schemitsch EH

The computed neck-shaft angle and the size of the femoral component were recorded in 100 consecutive hip resurfacings using imageless computer-navigation and compared with the angle measured before operation and with actual component implanted. The reliability of the registration was further analysed using ten cadaver femora. The mean absolute difference between the measured and navigated neck-shaft angle was 16.3° (0° to 52°). Navigation underestimated the measured neck-shaft angle in 38 patients and the correct implant size in 11. Registration of the cadaver femora tended to overestimate the correct implant size and provided a low level of repeatability in computing the neck-shaft angle.

Prudent pre-operative planning is advisable for use in conjunction with imageless navigation since misleading information may be registered intraoperatively, which could lead to inappropriate sizing and positioning of the femoral component in hip resurfacing.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 885 - 888
1 Jul 2008
Thomason K Eyres KS

Salvage of a failed total ankle replacement is technically challenging and although a revision procedure may be desirable, a large amount of bone loss or infection may preclude this. Arthrodesis can be difficult to achieve and is usually associated with considerable shortening of the limb.

We describe a technique for restoring talar height using an allograft from the femoral head compressed by an intramedullary nail. Three patients with aseptic loosening were treated successfully by this method with excellent symptomatic relief at a mean follow-up of 32 months (13 to 50).


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1164 - 1171
1 Sep 2009
Bae DK Song SJ Yoon KH

We assessed the reliability, accuracy and variability of closed-wedge high tibial osteotomy (HTO) using computer-assisted surgery compared to the conventional technique. A total of 50 closed-wedge HTO procedures were performed using the navigation system, and compared with 50 HTOs that had been performed with the conventional technique. In the navigation group, the mean mechanical axis prior to osteotomy was varus 8.2°, and the mean mechanical axis following fixation was valgus 3.6°. On the radiographs the mean pre-operative mechanical axis was varus 7.3°, and the mean post-operative mechanical axis was valgus 2.1°. There was a positive correlation between the measured data taken under navigation and by radiographs (r > 0.3, p < 0.05). The mean correction angle was significantly more accurate in the navigation group (p < 0.002). The variability of the correction was significantly lower in the navigation group (2.3° vs 3.7°, p = 0,012). We conclude that navigation provides reliable real-time intra-operative information, may increase accuracy, and improves the precision of a closed-wedge HTO.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1545 - 1550
1 Nov 2007
Koslowsky TC Mader K Dargel J Koebke J Hellmich M Pennig D

We have evaluated four different fixation techniques for the reconstruction of a standard Mason type-III fracture of the radial head in a sawbone model. The outcome measurements were the quality of the reduction, and stability.

A total of 96 fractures was created. Six surgeons were involved in the study and each reconstructed 16 fractures with 1.6 mm fine-threaded wires (Fragment Fixation System (FFS)), T-miniplates, 2 mm miniscrews and 2 mm Kirschner (K-) wires; four fractures being allocated to each method using a standard reconstruction procedure.

The quality of the reduction was measured after definitive fixation. Biomechanical testing was performed using a transverse plane shear load in two directions to the implants (parallel and perpendicular) with respect to ultimate failure load and displacement at 50 N.

A significantly better quality of reduction was achieved using the FFS wires (Tukey’s post hoc tests, p < 0.001) than with the other devices with a mean step in the articular surface and the radial neck of 1.04 mm (sd 0.96) for the FFS, 4.25 mm (sd 1.29) for the miniplates, 2.21 mm (sd 1.06) for the miniscrews and 2.54 mm (sd 0.98) for the K-wires. The quality of reduction was similar for K-wires and miniscrews, but poor for miniplates.

The ultimate failure load was similar for the FFS wires (parallel, 196.8 N (sd 46.8), perpendicular, 212.5 N (sd 25.6)), miniscrews (parallel, 211.8 N (sd 47.9), perpendicular, 208.0 N (sd 65.9)) and K-wires (parallel, 200.4 N (sd 54.5), perpendicular, 165.2 N (sd 37.9)), but significantly worse (Tukey’s post hoc tests, p < 0.001) for the miniplates (parallel, 101.6 N (sd 43.1), perpendicular, 122.7 N (sd 40.7)). There was a significant difference in the displacement at 50 N for the miniplate (parallel, 4.8 mm (sd 2.8), perpendicular, 4.8 mm (sd 1.7)) vs FFS (parallel, 2.1 mm (sd 0.8), perpendicular, 1.9 mm (sd 0.7)), miniscrews (parallel, 1.8 mm (sd 0.5), perpendicular, 2.3 mm (sd 0.8)) and K-wires (parallel, 2.2 mm (sd 1.8), perpendicular, 2.4 mm (sd 0.7; Tukey’s post hoc tests, p < 0.001)).

The fixation of a standard Mason type-III fracture in a sawbone model using the FFS system provides a better quality of reduction than that when using conventional techniques. There was a significantly better stability using FFS implants, miniscrews and K-wires than when using miniplates.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 471 - 476
1 Apr 2007
Kim Y Kim J Yoon S

Bilateral sequential total knee replacement was carried out under one anaesthetic in 100 patients. One knee was replaced using a CT-free computer-assisted navigation system and the other conventionally without navigation. The two methods were compared for accuracy of orientation and alignment of the components. There were 85 women and 15 men with a mean age of 67.6 years (54 to 83). Radiological and CT imaging was carried out to determine the alignment of the components. The mean follow-up was 2.3 years (2 to 3).

The operating and tourniquet times were significantly longer in the navigation group (p < 0.001). There were no significant pre- or post-operative differences between the knee scores of the two groups (p = 0.288 and p = 0.429, respectively). The results of imaging and the number of outliers for all radiological parameters were not statistically different (p = 0.109 to p = 0.920).

In this series computer-assisted navigated total knee replacement did not result in more accurate orientation and alignment of the components than that achieved by conventional total knee replacement.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 455 - 460
1 Apr 2007
Sugano N Nishii T Miki H Yoshikawa H Sato Y Tamura S

We have developed a CT-based navigation system using infrared light-emitting diode markers and an optical camera. We used this system to perform cementless total hip replacement using a ceramic-on-ceramic bearing couple in 53 patients (60 hips) between 1998 and 2001. We reviewed 52 patients (59 hips) at a mean of six years (5 to 8) postoperatively. The mid-term results of total hip replacement using navigation were compared with those of 91 patients (111 hips) who underwent this procedure using the same implants, during the same period, without navigation. There were no significant differences in age, gender, diagnosis, height, weight, body mass index, or pre-operative clinical score between the two groups. The operation time was significantly longer where navigation was used, but there was no significant difference in blood loss or navigation-related complications. With navigation, the acetabular components were placed within the safe zone defined by Lewinnek, while without, 31 of the 111 components were placed outside this zone. There was no significant difference in the Merle d’Aubigne and Postel hip score at the final follow-up. However, hips treated without navigation had a higher rate of dislocation. Revision was performed in two cases undertaken without navigation, one for aseptic acetabular loosening and one for fracture of a ceramic liner, both of which showed evidence of neck impingement on the liner. A further five cases undertaken without navigation showed erosion of the posterior aspect of the neck of the femoral component on the lateral radiographs. These seven impingement-related mechanical problems correlated with malorientation of the acetabular component. There were no such mechanical problems in the navigated group.

We conclude that CT-based navigation increased the precision of orientation of the acetabular component and control of limb length in total hip replacement, without navigation-related complications. It also reduced the rate of dislocation and mechanical problems related to impingement.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 601 - 605
1 May 2006
Pitto RP Graydon AJ Bradley L Malak SF Walker CG Anderson IA

The object of this study was to develop a method to assess the accuracy of an image-free total knee replacement navigation system in legs with normal or abnormal mechanical axes. A phantom leg was constructed with simulated hip and knee joints and provided a means to locate the centre of the ankle joint. Additional joints located at the midshaft of the tibia and femur allowed deformation in the flexion/extension, varus/valgus and rotational planes. Using a digital caliper unit to measure the coordinates precisely, a software program was developed to convert these local coordinates into a determination of actual leg alignment. At specific points in the procedure, information was compared between the digital caliper measurements and the image-free navigation system. Repeated serial measurements were undertaken. In the setting of normal alignment the mean error of the system was within 0.5°. In the setting of abnormal plane alignment in both the femur and the tibia, the error was within 1°. This is the first study designed to assess the accuracy of a clinically-validated navigation system. It demonstrates in vitro accuracy of the image-free navigation system in both normal and abnormal leg alignment settings.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 997 - 1002
1 Aug 2006
Vendittoli P Lavigne M Girard J Roy AG

We have undertaken a prospective, randomised study to compare conservation of acetabular bone after total hip replacement and resurfacing arthroplasty of the hip. We randomly assigned 210 hips to one of the two treatment groups. Uncemented, press-fit acetabular components were used for both.

No significant difference was found in the mean diameter of acetabular implant inserted in the groups (54.74 mm for total hip replacement and 54.90 mm for resurfacing arthroplasty). In seven resurfacing procedures (6.8%), the surgeon used a larger size of component in order to match the corresponding diameter of the femoral component.

With resurfacing arthroplasty, conservation of bone is clearly advantageous on the femoral side. Our study has shown that, with a specific design of acetabular implant and by following a careful surgical technique, removal of bone on the acetabular side is comparable with that of total hip replacement.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1568 - 1574
1 Nov 2005
Day RE Megson S Wood D

Allograft bone is widely used in orthopaedic surgery, but peri-operative infection of the graft remains a common and disastrous complication. The efficacy of systemic prophylactic antibiotics is unproven, and since the graft is avascular it is likely that levels of antibiotic in the graft are low.

Using an electrical potential to accelerate diffusion of antibiotics into allograft bone, high levels were achieved in specimens of both sheep and human allograft. In human bone these ranged from 187.1 mg/kg in endosteal (sd 15.7) to 124.6 (sd 46.2) in periosteal bone for gentamicin and 31.9 (sd 8.9) in endosteal and 2.9 (sd 1.1) in periosteal bone for flucloxacillin. The antibiotics remained active against bacteria in vitro after iontophoresis and continued to elute from the allograft for up to two weeks.

Structural allograft can be supplemented directly with antibiotics using iontophoresis. The technique is simple and inexpensive and offers a potential means of reducing the rate of peri-operative infection in allograft surgery. Iontophoresis into allograft bone may also be applicable to other therapeutic compounds.