Advertisement for orthosearch.org.uk
Results 1 - 20 of 409
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1057 - 1063
1 Aug 2013
Zeng Y Shen B Yang J Zhou ZK Kang PD Pei FX

The purpose of this study was to undertake a meta-analysis to determine whether there is lower polyethylene wear and longer survival when using mobile-bearing implants in total knee replacement when compared with fixed-bearing implants. Of 975 papers identified, 34 trials were eligible for data extraction and meta-analysis comprising 4754 patients (6861 knees). We found no statistically significant differences between the two designs in terms of the incidence of radiolucent lines, osteolysis, aseptic loosening or survival. There is thus currently no evidence to suggest that the use of mobile-bearing designs reduce polyethylene wear and prolong survival after total knee replacement. Cite this article: Bone Joint J 2013;95-B:1057–63


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 891 - 897
1 Jul 2018
Teeter MG Lanting BA Naudie DD McCalden RW Howard JL MacDonald SJ

Aims. The aim of this study was to determine whether there is a difference in the rate of wear between acetabular components positioned within and outside the ‘safe zones’ of anteversion and inclination angle. Patients and Methods. We reviewed 100 hips in 94 patients who had undergone primary total hip arthroplasty (THA) at least ten years previously. Patients all had the same type of acetabular component with a bearing couple which consisted of a 28 mm cobalt-chromium head on a highly crosslinked polyethylene (HXLPE) liner. A supine radiostereometric analysis (RSA) examination was carried out which acquired anteroposterior (AP) and lateral paired images. Acetabular component anteversion and inclination angles were measured as well as total femoral head penetration, which was divided by the length of implantation to determine the rate of polyethylene wear. Results. The mean anteversion angle was 19.4° (-15.2° to 48°, . sd. 11.4°), the mean inclination angle 43.4° (27.3° to 60.5°, . sd. 6.6°), and the mean wear rate 0.055 mm/year (. sd. 0.060). Exactly half of the hips were positioned inside the ‘safe zone’. There was no difference (median difference, 0.012 mm/year; p = 0.091) in the rate of wear between acetabular components located within or outside the ‘safe zone’. When compared to acetabular components located inside the ‘safe zone’, the wear rate was no different for acetabular components that only achieved the target anteversion angle (median difference, 0.012 mm/year; p = 0.138), target inclination angle (median difference, 0.013 mm/year; p = 0.354), or neither target (median difference, 0.012 mm/year; p = 0.322). Conclusion. Placing the acetabular component within or outside the ‘safe zone’ did not alter the wear rate of HXLPE at long-term follow-up to a level that risked osteolysis. HXLPE appears to be a forgiving bearing material in terms of articular surface wear, but care must still be taken to position the acetabular component correctly so that the implant is stable. Cite this article: Bone Joint J 2018;100-B:891-7


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1695 - 1701
1 Nov 2021
Currier JH Currier BH Abdel MP Berry DJ Titus AJ Van Citters DW

Aims

Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance.

Methods

An institutional review board-approved retrieval archive was surveyed for modular PE tibial inserts over a range of in vivo duration (mean 58 months (0 to 290)). Five knee designs, totalling 1,585 devices, were studied. Insert wear was estimated from measured thickness change using a previously published method. Linear regression statistical analyses were used to test association of 12 patient and implant design variables with calculated wear rate.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 38 - 43
1 Mar 2024
Buckner BC Urban ND Cahoy KM Lyden ER Deans CF Garvin KL

Aims

Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE.

Methods

From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 367 - 373
1 Mar 2010
Kendrick BJL Longino D Pandit H Svard U Gill HS Dodd CAF Murray DW Price AJ

The Oxford Unicompartmental Knee replacement (UKR) was introduced as a design to reduce polyethylene wear. There has been one previous retrieval study involving this implant, which reported very low rates of wear in some specimens but abnormal patterns of wear in others. There has been no further investigation of these abnormal patterns. The bearings were retrieved from 47 patients who had received a medial Oxford UKR for anteromedial osteoarthritis of the knee. None had been studied previously. The mean time to revision was 8.4 years (. sd. 4.1), with 20 having been implanted for over ten years. The macroscopic pattern of polyethylene wear and the linear penetration were recorded for each bearing. The mean rate of linear penetration was 0.07 mm/year. The patterns of wear fell into three categories, each with a different rate of linear penetration; 1) no abnormal macroscopic wear and a normal articular surface, n = 16 (linear penetration rate = 0.01 mm/year); 2) abnormal macroscopic wear and normal articular surfaces with extra-articular impingement, n = 16 (linear penetration rate = 0.05 mm/year); 3) abnormal macroscopic wear and abnormal articular surfaces with intra-articular impingement +/− signs of non-congruous articulation, n = 15 (linear penetration rate = 0.12 mm/year). The differences in linear penetration rate were statistically significant (p < 0.001). These results show that very low rates of polyethylene wear are possible if the device functions normally. However, if the bearing displays suboptimal function (extra-articular, intra-articular impingement or incongruous articulation) the rates of wear increase significantly


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 2 | Pages 249 - 253
1 Mar 1993
Cates H Faris P Keating E Ritter M

We examined radiographic polyethylene wear in 233 cemented total hip arthroplasties (201 patients) with either a metal-backed or a non-metal-backed acetabular cup. All patients had identical cemented one-piece titanium femoral stems with a femoral head diameter of 28 mm. The mean linear wear rate was 0.11 mm/yr in metal-backed sockets and 0.08 mm/yr in non-metal-backed sockets (p = 0.0002). The mean volumetric wear rate was 66.2 mm3/yr in the metal-backed sockets and 48.2 mm3/yr in the polyethylene sockets (p = 0.0002). The addition of metal backing to a cemented acetabular cup therefore resulted in a 37% increase in mean polyethylene wear rates which may partially explain the higher failure rate of cemented metal-backed cups. Linear regression analysis also implicated increased follow-up time (log), gross acetabular migration, metal backing and male gender in increasing polyethylene wear. We advocate the use of an all-polyethylene cup in cemented total hip arthroplasty. The increased polyethylene wear must also cause concern about the wear rate of uncemented metal-backed acetabular sockets


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 977 - 982
1 Jul 2009
Terrier A Merlini F Pioletti DP Farron A

Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from in vivo recorded data. After one year of use, the volumetric wear was 8.4 mm. 3. for the anatomical prosthesis, but 44.6 mm. 3. for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 655 - 660
1 Jul 2003
Tanaka K Tamura J Kawanabe K Shimizu M Nakamura T

We examined the behaviour of alumina ceramic heads in 156 cemented total hip arthroplasties, at a minimum follow-up of eight years. They were divided into three groups according to the size of the femoral head; 22, 26, and 28 mm. We measured polyethylene wear radiologically using a computer-aided technique. The linear wear rate of polyethylene sockets for the 28 mm heads was high (0.156 mm/year), whereas those for the 22 and 26 mm heads were relatively low (0.090 and 0.098 mm/year, respectively). Moreover, the surface roughness data of retrieved femoral heads clearly showed maintenance of an excellent surface finish of the current alumina. We conclude that the alumina ceramic femoral heads currently used are associated with a reduced rate of polyethylene wear


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 361 - 365
1 May 1997
Shih C Lee P Chen J Tai C Chen L Wu JS Chang WH

We made a clinical study of polyethylene wear in 240 hips of 187 patients having primary total hip arthroplasties from 1989 to 1990, using uncemented Osteonics components, with a head size of 26 mm. We excluded cups with anteversion of over 20° and measured linear wear by a new method using a digitiser and special software of our design. Follow-up was from two to five years (mean 4.3). The mean age at operation was 50.3 years, with more men than women (1.4:1). The mean linear wear per year was 0.15 mm; this did not increase with the longevity of the prosthesis (p = 0.54). In 59 hips showing evidence of osteolysis, the mean linear wear rate was significantly higher at 0.23 mm/year (p < 0.001). The mean linear wear rate also correlated significantly with age at the time of operation (p = 0.008), but we found no significant correlations with body-weight, gender, aetiology of the disease, thickness of polyethylene, or cup position. Our new method of measurement is time-saving and reproducible. The results confirm the greater rate of linear wear of polyethylene in patients showing osteolysis and in those who are younger


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 2 | Pages 263 - 266
1 Mar 1994
Hernandez Keating E Faris P Meding J Ritter M

We measured polyethylene wear in 231 porous-coated uncemented acetabular cups. We divided the hips into two groups according to the fixation of the femoral component, by cementing (n = 97) or press-fit (n = 134). Follow-up was from three to five years. The patients in two sub-groups were matched for weight, diagnosis, sex, age and length of follow-up. The linear wear rate of cups articulated with uncemented femoral components (0.22 mm/year) was significantly higher than the wear rate (0.15 mm/year) of cups articulated within cemented femoral components (p < 0.05). These results can be compared with previously reported wear rates of 0.08 mm/year for cemented all-polyethylene cups and 0.11 mm/year for cemented metal-backed cups. The higher wear rates of uncemented arthroplasties could jeopardize the long-term results of this type of hip replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 259 - 265
1 Mar 1999
Smith PN Ling RSM Taylor R

We have studied the influence of weight-bearing on the measurement of wear of the polyethylene acetabular component in total hip arthroplasty using two techniques. The measured vertical wear was significantly greater when radiographs were taken weight-bearing rather than with the patient supine (p = 0.001, method 1; p = 0.007, method 2). Calculations of rates of linear wear of the acetabular component were significantly underestimated (p < 0.05) when radiographs were taken supine. There are two reasons for this. First, a change in pelvic orientation when bearing weight ensures that the thinnest polyethylene is brought into relief, and secondly, the head of the femoral component assumes the position of maximal displacement along its wear path. Interpretation of previous studies on both linear and volumetric polyethylene wear in total hip arthroplasty should be reassessed in the light of these findings


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 470 - 475
1 Apr 2011
Kendrick BJL Simpson DJ Kaptein BL Valstar ER Gill HS Murray DW Price AJ

The Oxford unicompartmental knee replacement (UKR) was designed to minimise wear utilising a fully-congruent, mobile, polyethylene bearing. Wear of polyethylene is a significant cause of revision surgery in UKR in the first decade, and the incidence increases in the second decade. Our study used model-based radiostereometric analysis to measure the combined wear of the upper and lower bearing surfaces in 13 medial-compartment Oxford UKRs at a mean of 20.9 years (17.2 to 25.9) post-operatively. The mean linear penetration of the polyethylene bearing was 1.04 mm (0.307 to 2.15), with a mean annual wear rate of 0.045 mm/year (0.016 to 0.099). The annual wear rate of the phase-2 bearings (mean 0.022 mm/year) was significantly less (p = 0.01) than that of phase-1 bearings (mean 0.07 mm/year). The linear wear rate of the Oxford UKR remains very low into the third decade. We believe that phase-2 bearings had lower wear rates than phase-1 implants because of the improved bearing design and surgical technique which decreased the incidence of impingement. We conclude that the design of the Oxford UKR gives low rates of wear in the long term


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 760 - 767
1 Jul 2019
Galea VP Rojanasopondist P Laursen M Muratoglu OK Malchau H Bragdon C

Aims. Vitamin E-diffused, highly crosslinked polyethylene (VEPE) and porous titanium-coated (PTC) shells were introduced in total hip arthroplasty (THA) to reduce the risk of aseptic loosening. The purpose of this study was: 1) to compare the wear properties of VEPE to moderately crosslinked polyethylene; 2) to assess the stability of PTC shells; and 3) to report their clinical outcomes at seven years. Patients and Methods. A total of 89 patients were enrolled into a prospective study. All patients received a PTC shell and were randomized to receive a VEPE liner (n = 44) or a moderately crosslinked polyethylene (ModXLPE) liner (n = 45). Radiostereometric analysis (RSA) was used to measure polyethylene wear and component migration. Differences in wear were assessed while adjusting for body mass index, activity level, acetabular inclination, anteversion, and head size. Plain radiographs were assessed for radiolucency and patient-reported outcome measures (PROMs) were administered at each follow-up. Results. In total, 73 patients (82%) completed the seven-year visit. Mean seven-year linear proximal penetration was -0.07 mm (. sd. 0.16) and 0.00 mm (. sd. 0.22) for the VEPE and ModXLPE cohorts, respectively (p = 0.116). PROMs (p = 0.310 to 0.807) and radiolucency incidence (p = 0.330) were not different between the polyethylene cohorts. The mean proximal shell migration rate was 0.04 mm per year (. sd. 0.09). At seven years, patients with radiolucency (34%) demonstrated greater migration (mean difference: 0.6 mm (. sd. 0.2); p < 0.001). PROMs were lower for patients with radiolucency and greater proximal migration (p = 0.009 to p = 0.045). No implants were revised for aseptic loosening. Conclusion. This is the first randomized controlled trial to report seven-year RSA results for VEPE. All wear rates were below the previously reported osteolysis threshold (0.1 mm per year). PTC shells demonstrated acceptable primary stability through seven years, as indicated by low migration and lack of aseptic loosening. However, patients with acetabular radiolucency were associated with higher shell migration and lower PROM scores. Cite this article: Bone Joint J 2019;101-B:760–767


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 582 - 589
1 Jul 1999
Røkkum M Brandt M Bye K Hetland KR Waage S Reigstad A

We have followed up for a period of seven to nine years 100 consecutive arthroplasties of the hip in which an entirely HA-coated implant had been used. The clinical results were excellent and bony incorporation was extensive in all components. No stem became loose or subsided but five cups were revised because of loosening after 3.8 to 5.5 years, having functioned painlessly and shown radiological ingrowth. Revision procedures because of excessive polyethylene wear have been performed on 18 hips and are planned for six more. Two eroded metal backings with worn-through polyethylene were exchanged; six hips showed metallosis without polyethylene wear-through. There were two cases of granulomatous cysts in the groin and 66 hips had osteolysis located periarticularly, in the greater trochanter or in the acetabulum


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 742 - 750
1 Jul 2001
Kim Y Kim J Cho S

We have reviewed 70 patients with bilateral simultaneous total hip arthroplasties to determine the rate of failure and to compare polyethylene wear and osteolysis between an implant with a cobalt-chrome head and Hylamer liner with that of a zirconia head and Hylamer liner. The mean thickness of the polyethylene liner was 11.0 mm (8.8 to 12.2) in the hip with a zirconia head and 10.7 mm (8.8 to 12.2) in that with a cobalt-chrome head. At follow-up at 6.4 years no acetabular or femoral component had been revised for aseptic loosening and no acetabular or femoral component was loose according to radiological criteria in both the cemented and cementless groups. The mean rate of linear wear and annual wear rate were highest in the 22 mm zirconia femoral head (1.25 mm (SD 1.05) and 0.21 mm (SD 0.18), respectively) and lowest in the 22 mm cobalt-chrome femoral head (0.70 mm (SD 0.39) and 0.12 mm (SD 0.07), respectively). The mean volumetric wear was highest in the 28 mm zirconia femoral head (730.79 mm. 3. ) and lowest in the 22 mm cobalt-chrome femoral head (264.67 mm. 3. ), but if the results were compared by size of the femoral head and type of material there was no statistical difference (p > 0.05). Sequential measurements of annual wear showed that the zirconia femoral head had a relatively higher rate of penetration than the cobalt-chrome head over the first three years; thereafter the rate of wear was reduced and compared favourably with that of cobalt-chrome heads. There was a statistically significant relationship between the wear of the polyethylene liner and the age of the patient, male gender and the degree of abduction angle of the cup, but not diagnosis, weight, hip score, range of movement, or amount of anteversion. Osteolysis was identified on both sides of the acetabulum in six patients (9%). Of 12 hips with acetabular osteolysis, six had a 28 mm cobalt-chrome femoral head and the remaining six a 28 mm zirconia head. Osteolysis was observed in zones 1A and 7A of the femur in two hips (3%) with a 28 mm zirconia head (cemented hip) and in four (6%) with a 28 mm cobalt-chrome femoral head (cementless hip). Our findings suggest that although the performance of a zirconia femoral head with a Hylamer liner was not statistically different from that of a cobalt-chrome femoral head and Hylamer liner, there was a trend for the zirconia head to be worse than the cobalt-chrome femoral head


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 59 - 65
1 May 2024
Liu WKT Cheung A Fu H Chan PK Chiu KY

Aims. Isolated acetabular liner exchange with a highly crosslinked polyethylene (HXLPE) component is an option to address polyethylene wear and osteolysis following total hip arthroplasty (THA) in the presence of a well-fixed acetabular shell. The liner can be fixed either with the original locking mechanism or by being cemented within the acetabular component. Whether the method used for fixation of the HXLPE liner has any bearing on the long-term outcomes is still unclear. Methods. Data were retrieved for all patients who underwent isolated acetabular component liner exchange surgery with a HXLPE component in our institute between August 2000 and January 2015. Patients were classified according to the fixation method used (original locking mechanism (n = 36) or cemented (n = 50)). Survival and revision rates were compared. A total of 86 revisions were performed and the mean duration of follow-up was 13 years. Results. A total of 20 patients (23.3%) had complications, with dislocation alone being the most common (8.1%; 7/86). Ten patients (11.6%) required re-revision surgery. Cementing the HXLPE liner (8.0%; 4/50) had a higher incidence of re-revision due to acetabular component liner-related complications than using the original locking mechanism (0%; 0/36; p = 0.082). Fixation using the original locking mechanism was associated with re-revision due to acetabular component loosening (8.3%; 3/36), compared to cementing (0%; 0/50; p = 0.038). Overall estimated mean survival was 19.2 years. There was no significant difference in the re-revision rate between the original locking mechanism (11.1%; 4/36) and cementing (12.0%; 6/50; p = 0.899). Using Kaplan-Meier survival analysis, the revision-free survival of HXLPE fixed with the original locking mechanism and cementing was 94.1% and 93.2%, respectively, at ten years, and 84.7% and 81.3%, respectively, at 20 years (p = 0.840). Conclusion. The re-revision rate and the revision-free survival following acetabular component liner exchange revision surgery using the HXLPE liner were not influenced by the fixation technique used. Both techniques were associated with good survival at a mean follow-up of 13 years. Careful patient selection is necessary for isolated acetabular component liner exchange revision surgery in order to achieve the best outcomes. Cite this article: Bone Joint J 2024;106-B(5 Supple B):59–65


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 1 | Pages 9 - 17
1 Jan 1992
Engh G Dwyer K Hanes C

We examined 86 polyethylene inserts, retrieved from total and unicompartmental knee prostheses after an average of 39.5 months in situ, grading them from 0 to 3 for seven modes of polyethylene degradation. Severe wear, with delamination or deformation, was observed in 51% of the implants, and was associated with time in situ, lack of congruency, thin polyethylene, third-body wear debris, and heat-pressed polyethylene. Significant under-surface cold flow was identified in some areas of unsupported polyethylene, and was associated with delamination in the load-bearing areas of thin inserts above screw holes in the underlying metal tray. We recommend the use of thicker polyethylene inserts, particularly in young, active patients and in designs with screw holes in the tibial baseplate. Thin polyethylene inserts which are at risk for accelerated wear and premature failure should be monitored radiographically at annual intervals


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 6 | Pages 981 - 981
1 Nov 1993
Maxwell H Sampath S


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 1 | Pages 18 - 22
1 Jan 1992
Jones S Pinder I Moran C Malcolm A

Isolated wear of the polyethylene tibial component led to failure in five of a series of 108 uncemented porous-coated knee replacements. The clinical features included pain, effusion and instability with progressive varus deformity. In all cases there was extensive wear on the medial side of the polyethylene surface of the prosthesis. The mechanism of such wear is complex, being due in part to the unconstrained nature of the joint and the incongruity of its surfaces. Other design characteristics may have contributed.


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 200 - 205
1 Feb 2022
Orita K Goto K Kuroda Y Kawai T Okuzu Y Matsuda S

Aims. The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA). Methods. We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up. Results. The mean follow-up period was 19.1 years (SD 0.6; 17.3 to 20.1). The 19-year overall survival rate with the end point of all-cause revision was 97.0% (95% confidence interval (CI) 91 to 100). The mean JOA score improved from 43.2 (SD 10.6; 30 to 76) before surgery to 90.2 (SD 6.4; 76 to 98) at the final follow-up (p < 0.001). There was no osteolysis or loosening of the acetabular or femoral components. The overall steady-state wear rate was 0.013 mm/year (SD 0.012). There was no hip with a steady-state wear rate of > 0.1 mm/year. There was no significant difference in wear rates for each period. We found no significant correlation between the wear rate and age, body weight, BMI, or cup inclination. Conclusion. First-generation annealed HXLPE shows excellent wear resistance and no acceleration of wear for approximately 20 years, with low all-cause revision rates. Cite this article: Bone Joint J 2022;104-B(2):200–205