The development and pre-clinical evaluation of
nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated
with titanium dioxide (TiO. 2. ) nanotube arrays is reviewed. In
vitro and in vivo evaluations show that
TiO. 2. nanotubes on Ti surfaces positively affect the osseointegration,
cell differentiation, mineralisation, and anti-microbial properties.
This surface treatment can be superimposed onto existing macro and
micro porous Ti implants creating a surface texture that also interacts
with cells at the nano level. Histology and mechanical pull-out testing
of specimens in rabbits indicate that TiO. 2. nanotubes
improves bone bonding nine-fold (p = 0.008). The rate of mineralisation
associated with TiO. 2. nanotube surfaces is about three
times that of non-treated Ti surfaces. In addition to improved osseointegration
properties, TiO. 2. nanotubes reduce the initial adhesion
and colonisation of Staphylococcus epidermidis.
Collectively, the properties of Ti
The aim of this study was to evaluate whether
coating titanium discs with selenium in the form of sodium selenite decreased
bacterial adhesion of In order to evaluate bacterial adhesion, sterile titanium discs
were coated with increasing concentrations of selenium and incubated
with bacterial solutions of The tested Selenium coating is a promising method to reduce bacterial attachment
on prosthetic material. Cite this article:
Aims. It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse tibial implant by pharmacologically blocking the vascular endothelial growth factor (VEGF) pathway. Materials and Methods. An implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (n = 38). Mice received anti-VEGF receptor-1 (VEGFR-1) antibody (25 mg/kg) and VEGF receptor-2 (VEGFR-2) antibody (25 mg/kg; n = 19) or an isotype control antibody (n = 19). Flow cytometric (n = 4/group) and immunofluorescent (n = 3/group) analyses were performed at two weeks post-implantation to detect the distribution and density of CD31. hi. EMCN. hi. endothelium. RNA sequencing analysis was performed using sorted CD31. hi. EMCN. hi. endothelial cells (n = 2/group). Osteoblast lineage cells expressing osterix (OSX) and osteopontin (OPN) were also detected with immunofluorescence. Mechanical pull-out testing (n = 12/group) was used at four weeks post-implantation to determine the strength of the bone-implant interface. After pull-out testing, the tissue attached to the
Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of
Aims. Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. Methods. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the
The objective of this study was to compare the two-year migration and clinical outcomes of a new cementless hydroxyapatite (HA)-coated titanium acetabular shell with its previous version, which shared the same geometrical design but a different manufacturing process for applying the titanium surface. Overall, 87 patients undergoing total hip arthroplasty (THA) were randomized to either a Trident II HA or Trident HA shell, each cementless with clusterholes and HA-coating. All components were used in combination with a cemented Exeter V40 femoral stem. Implant migration was measured using radiostereometric analysis (RSA), with radiographs taken within two days of surgery (baseline), and at three, 12, and 24 months postoperatively. Proximal acetabular component migration was the primary outcome measure. Clinical scores and patient-reported outcome measures (PROMs) were collected at each follow-up.Aims
Methods
Temporary hemiepiphysiodesis (HED) is applied to children and adolescents to correct angular deformities (ADs) in long bones through guided growth. Traditional Blount staples or two-hole plates are mainly used for this indication. Despite precise surgical techniques and attentive postoperative follow-up, implant-associated complications are frequently described. To address these pitfalls, a flexible staple was developed to combine the advantages of the established implants. This study provides the first results of guided growth using the new implant and compares these with the established two-hole plates and Blount staples. Between January 2013 and December 2016, 138 patients (22 children, 116 adolescents) with genu valgum or genu varum were treated with 285 flexible staples. The minimum follow-up was 24 months. These results were compared with 98 patients treated with 205 two-hole plates and 92 patients treated with 535 Blount staples. In long-standing anteroposterior radiographs, mechanical axis deviations (MADs) were measured before and during treatment to analyze treatment efficiency. The evaluation of the new flexible staple was performed according to the idea, development, evaluation, assessment, long-term (IDEAL) study framework (Stage 2a).Aims
Methods
Aims. Our intention was to investigate if the highly porous biological fixation surfaces of a new 3D-printed total knee arthroplasty (TKA) achieved adequate fixation of the tibial and patellar components to the underlying bone. Patients and Methods. A total of 29 patients undergoing primary TKA consented to participate in this prospective cohort study. All patients received a highly porous tibial baseplate and metal-backed patella. Patient-reported outcomes measures were recorded and implant migration was assessed using radiostereometric analysis. Results. Patient function significantly improved by three months postoperatively (p < 0.001). Mean difference in maximum total point motion between 12 and 24 months was 0.021 mm (-0.265 to 0.572) for the tibial implant and 0.089 mm (-0.337 to 0.758) for the patellar implant. The rate of tibial and patellar migration was largest over the first six postoperative weeks, with no changes in mean tibia migration occurring after six months, and no changes in mean patellar migration occurring after six weeks. One patellar component showed a rapid rate of migration between 12 and 24 months. Conclusion. Biological fixation appears to occur reliably on the highly porous
Endoprosthetic reconstruction following distal femur tumour resection has been widely advocated. In this paper, we present the design of an uncemented endoprosthesis system featuring a short, curved stem, with the goal of enhancing long-term survivorship and functional outcomes. This study involved patients who underwent implantation of an uncemented distal femoral endoprosthesis with a short and curved stem between 2014 and 2019. Functional outcomes were assessed using the 1993 version of the Musculoskeletal Tumour Society (MSTS-93) score. Additionally, we quantified five types of complications and assessed osseointegration radiologically. The survivorship of the endoprosthesis was evaluated according to two endpoints. A total of 134 patients with a median age of 26 years (IQR 16 to 41) were included in our study. The median follow-up time was 61 months (IQR 56 to 76), and the median functional MSTS-93 was 83% (IQR 73 to 91) postoperatively.Aims
Methods
Four uncemented Symax hip stems were extracted at three weeks and nine, 13 and 32 months, respectively, for reasons other than loosening. The reasons for implant removal were infection in two cases, recurrent dislocation in one and acetabular fracture in one. They were analysed to assess the effect and behaviour of an electrochemically deposited, completely resorbable biomimetic BONIT-hydroxyapatite (HA) coating (proximal part) and a DOTIZE surface treatment (distal part) using qualitative histology, quantitative histomorphometry and scanning electron microscopy (SEM). Early and direct bone-implant bonding with signs of active remodelling of bone and the HA coating were demonstrated by histology and SEM. No loose BONIT-HA particles or delamination of the coating were observed, and there was no inflammation or fibrous interposition at the interface. Histomorphometry showed bone-implant contact varying between 26.5% at three weeks and 83.5% at 13 months at the HA-coated
The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time. Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Aims
Methods
Temporary epiphysiodesis (ED) is commonly applied in children and adolescents to treat leg length discrepancies (LLDs) and tall stature. Traditional Blount staples or modern two-hole plates are used in clinical practice. However, they require accurate planning, precise surgical techniques, and attentive follow-up to achieve the desired outcome without complications. This study reports the results of ED using a novel rigid staple (RigidTack) incorporating safety, as well as technical and procedural success according to the idea, development, evaluation, assessment, long-term (IDEAL) study framework. A cohort of 56 patients, including 45 unilateral EDs for LLD and 11 bilateral EDs for tall stature, were prospectively analyzed. ED was performed with 222 rigid staples with a mean follow-up of 24.4 months (8 to 49). Patients with a predicted LLD of ≥ 2 cm at skeletal maturity were included. Mean age at surgery was 12.1 years (8 to 14). Correction and complication rates including implant-associated problems, and secondary deformities as well as perioperative parameters, were recorded (IDEAL stage 2a). These results were compared to historical cohorts treated for correction of LLD with two-hole plates or Blount staples.Aims
Methods
Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Aims
Methods
We used an in vivo model to assess the use of an autogenous cancellous bone block and marrow graft for augmenting tendon reattachment to metallic implants. We hypothesised that augmentation of the tendon-implant interface with a bone block would enable retention of the graft on the
Aims. Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI model of debridement, antibiotics, and implant retention (DAIR) was used to test the hypothesis that PlySs2, a bacteriophage-derived lysin, can target S. aureus biofilm and address the unique challenges presented in this periprosthetic environment. Methods. The ability of PlySs2 and vancomycin to kill biofilm and colony-forming units (CFUs) on orthopaedic implants were compared using in vitro models. An in vivo murine PJI model of DAIR was used to assess the efficacy of a combination of PlySs2 and vancomycin on periprosthetic bacterial load. Results. PlySs2 treatment reduced 99% more CFUs and 75% more biofilm compared with vancomycin in vitro. A combination of PlySs2 and vancomycin in vivo reduced the number of CFUs on the
Wear particles commonly used for experiments may carry adherent endotoxin on their surfaces, which may be responsible for the observed effects. In this study, we attached titanium plates to the tibiae of 20 rats. After osseointegration, endotoxin-contaminated or uncontaminated high-density-polyethylene (HDPE) particles were applied. Contaminated specimens showed a dramatic resorption of bone after seven days but new bone filled the site again at 21 days. Uncontaminated specimens showed no resorption. In 18 rats we implanted intramuscularly discs of ultra-high-molecular-weight polyethylene (UHMWPE) with baseline or excess contamination of endotoxin. Excess endotoxin disappeared within 24 hours and the amount of endotoxin remained at baseline level (contamination from production). Uncontaminated titanium discs did not adsorb endotoxin in vivo. The endotoxin was measured by analytical chemistry. Locally-applied endotoxin stimulated bone resorption similarly to that in experiments with wear particles. Endotoxin on the
This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys. Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment.Aims
Methods
We designed an in vivo study to determine if the superimposition of a microtexture on the surface of sintered titanium beads affected the extent of bone ingrowth. Cylindrical titanium intramedullary implants were coated with titanium beads to form a porous finish using commercial sintering techniques. A control group of implants was left in the as-sintered condition. The test group was etched in a boiling acidic solution to create an irregular surface over the entire porous coating. Six experimental dogs underwent simultaneous bilateral femoral intramedullary implantation of a control implant and an acid etched implant. At 12 weeks, the implants were harvested in situ and the femora processed for undecalcified, histological examination. Eight transverse serial sections for each implant were analysed by backscattered electron microscopy and the extent of bone ingrowth was quantified by computer-aided image analysis. The extent of bone ingrowth into the control implants was 15.8% while the extent of bone ingrowth into the etched implants was 25.3%, a difference of 60% that was statistically significant. These results are consistent with other research that documents the positive effect of microtextured surfaces on bone formation at an
Femoral revision component subsidence has been identified as predicting early failure in revision hip surgery. This comparative cohort study assessed the potential risk factors of subsidence in two commonly used femoral implant designs. A comparative cohort study was undertaken, analyzing a consecutive series of patients following revision total hip arthroplasties using either a tapered-modular (TM) fluted titanium or a porous-coated cylindrical modular (PCM) titanium femoral component, between April 2006 and May 2018. Clinical and radiological assessment was compared for both treatment cohorts. Risk factors for subsidence were assessed and compared.Aims
Methods