Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes. Cite this article:
Patients with a deformity of the hindfoot present a particular challenge when performing total knee arthroplasty (TKA). The literature contains little information about the relationship between TKA and hindfoot alignment. This systematic review aimed to determine from both clinical and radiological studies whether TKA would alter a preoperative hindfoot deformity and whether the outcome of TKA is affected by the presence of a postoperative hindfoot deformity. A systematic literature search was performed in the databases PubMed, EMBASE, Cochrane Library, and Web of Science. Search terms consisted of “total knee arthroplasty/replacement” combined with “hindfoot/ankle alignment”. Inclusion criteria were all English language studies analyzing the association between TKA and the alignment of the hindfoot, including the clinical or radiological outcomes. Exclusion criteria consisted of TKA performed with a concomitant extra-articular osteotomy and case reports or expert opinions. An assessment of quality was conducted using the modified Methodological Index for Non-Randomized Studies (MINORS). The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and registered in the PROSPERO database (CRD42019106980).Aims
Methods
Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level. A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB).Aims
Methods
The application of robotics in the operating theatre for knee arthroplasty remains controversial. As with all new technology, the introduction of new systems might be associated with a learning curve. However, guidelines on how to assess the introduction of robotics in the operating theatre are lacking. This systematic review aims to evaluate the current evidence on the learning curve of robot-assisted knee arthroplasty. An extensive literature search of PubMed, Medline, Embase, Web of Science, and Cochrane Library was conducted. Randomized controlled trials, comparative studies, and cohort studies were included. Outcomes assessed included: time required for surgery, stress levels of the surgical team, complications in regard to surgical experience level or time needed for surgery, size prediction of preoperative templating, and alignment according to the number of knee arthroplasties performed. A total of 11 studies met the inclusion criteria. Most were of medium to low quality. The operating time of robot-assisted total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) is associated with a learning curve of between six to 20 cases and six to 36 cases respectively. Surgical team stress levels show a learning curve of seven cases in TKA and six cases for UKA. Experience with the robotic systems did not influence implant positioning, preoperative planning, and postoperative complications. Robot-assisted TKA and UKA is associated with a learning curve regarding operating time and surgical team stress levels. Future evaluation of robotics in the operating theatre should include detailed measurement of the various aspects of the total operating time, including total robotic time and time needed for preoperative planning. The prior experience of the surgical team should also be evaluated and reported. Cite this article:
Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical environment. Functional alignment is proposed as a hybrid technique to allow mechanically-sound, soft tissue-friendly alignment targets to be identified and achieved. Cite this article:
The morphometry of the distal femur was largely studied to improve
bone-implant fit in total knee arthroplasty (TKA), but little is
known about the asymmetry of the posterior condyles. This study
aimed to investigate the dimensions of the posterior condyles and
the influence of externally rotating the femoral component on potential prosthetic
overhang or under-coverage. We analysed the shape of 110 arthritic knees at the time of primary
TKA using pre-operative CT scans. The height and width of each condyle
were measured at the posterior femoral cut in neutral position,
and in 3º and 5º of external rotation, using both central and medial
referencing systems. We compared the morphological characteristics
with those of 14 TKA models.Aims
Patients and Methods
Analysis of the morphology of the distal femur, and by extension
of the femoral components in total knee arthroplasty (TKA), has
largely been related to the aspect ratio, which represents the width
of the femur. Little is known about variations in trapezoidicity
(i.e. whether the femur is more rectangular or more trapezoidal).
This study aimed to quantify additional morphological characteristics
of the distal femur and identify anatomical features associated
with higher risks of over- or under-sizing of components in TKA. We analysed the shape of 114 arthritic knees at the time of primary
TKA using the pre-operative CT scans. The aspect ratio and trapezoidicity
ratio were quantified, and the post-operative prosthetic overhang
was calculated. We compared the morphological characteristics with
those of 12 TKA models.Aims
Methods
The treatment of osteochondral lesions is of
great interest to orthopaedic surgeons because most lesions do not heal
spontaneously. We present the short-term clinical outcome and MRI
findings of a cell-free scaffold used for the treatment of these
lesions in the knee. A total of 38 patients were prospectively evaluated
clinically for two years following treatment with an osteochondral
nanostructured biomimetic scaffold. There were 23 men and 15 women; the
mean age of the patients was 30.5 years (15 to 64). Clinical outcome
was assessed using the Knee Injury and Osteoarthritis Outcome Score
(KOOS), the Tegner activity scale and a Visual Analgue scale for
pain. MRI data were analysed based on the Magnetic Resonance Observation
of Cartilage Repair Tissue (MOCART) scoring system at three, 12
and 24 months post-operatively. There was a continuous significant
clinical improvement after surgery. In two patients, the scaffold
treatment failed (5.3%) There was a statistically significant improvement
in the MOCART precentage scores. The repair tissue filled most of
the defect sufficiently. We found subchondral laminar changes in all
patients. Intralesional osteophytes were found in two patients (5.3%).
We conclude that this one-step scaffold-based technique can be used
for osteochondral repair. The surgical technique is straightforward,
and the clinical results are promising. The MRI aspects of the repair
tissue continue to evolve during the first two years after surgery.
However, the subchondral laminar and bone changes are a concern. Cite this article:
We have investigated the benefits of patient
specific instrument guides, applied to osteotomies around the knee. Single,
dual and triple planar osteotomies were performed on tibias or femurs
in 14 subjects. In all patients, a detailed pre-operative plan was
prepared based upon full leg standing radiographic and CT scan information.
The planned level of the osteotomy and open wedge resection was
relayed to the surgery by virtue of a patient specific guide developed
from the images. The mean deviation between the planned wedge angle
and the executed wedge angle was 0° (-1 to 1, Cite this article:
A retrospective study was conducted to investigate
the changes in metal ion levels in a consecutive series of Birmingham
Hip Resurfacings (BHRs) at a minimum ten-year follow-up. We reviewed
250 BHRs implanted in 232 patients between 1998 and 2001. Implant
survival, clinical outcome (Harris hip score), radiographs and serum chromium
(Cr) and cobalt (Co) ion levels were assessed. Of 232 patients, 18 were dead (five bilateral BHRs), 15 lost
to follow-up and ten had been revised. The remaining 202 BHRs in
190 patients (136 men and 54 women; mean age at surgery 50.5 years
(17 to 76)) were evaluated at a minimum follow-up of ten years (mean
10.8 years (10 to 13.6)). The overall implant survival at 13.2 years
was 92.4% (95% confidence interval 90.8 to 94.0). The mean Harris
hip score was 97.7 (median 100; 65 to 100). Median and mean ion
levels were low for unilateral resurfacings (Cr: median 1.3 µg/l,
mean
1.95 µg/l (<
0.5 to 16.2); Co: median 1.0 µg/l, mean 1.62 µg/l
(<
0.5 to 17.3)) and bilateral resurfacings (Cr: median 3.2 µg/l,
mean 3.46 µg/l (<
0.5 to 10.0); Co: median 2.3 µg/l, mean 2.66
µg/l (<
0.5 to 9.5)). In 80 unilateral BHRs with sequential ion
measurements, Cr and Co levels were found to decrease significantly
(p <
0.001) from the initial assessment at a median of six years
(4 to 8) to the last assessment at a median of 11 years (9 to 13),
with a mean reduction of 1.24 µg/l for Cr and 0.88 µg/l for Co.
Three female patients had a >
2.5 µg/l increase of Co ions, associated with
head sizes ≤ 50 mm, clinical symptoms and osteolysis. Overall, there
was no significant difference in change of ion levels between genders
(Cr, p = 0.845; Co, p = 0.310) or component sizes (Cr, p = 0.505;
Co, p = 0.370). Higher acetabular component inclination angles correlated
with greater change in ion levels (Cr, p = 0.013; Co, p = 0.002).
Patients with increased ion levels had lower Harris hip scores (p
= 0.038). In conclusion, in well-functioning BHRs the metal ion levels
decreased significantly at ten years. An increase >
2.5 µg/l was
associated with poor function. Cite this article:
Obtaining a balanced flexion gap with correct
femoral component rotation is one of the prerequisites for a successful
outcome after total knee replacement (TKR). Different techniques
for achieving this have been described. In this study we prospectively
compared gap-balancing Both groups systematically reproduced a similar external rotation
of the femoral component relative to the surgical transepicondylar
axis: 2.4°
High-flexion total knee replacement (TKR) designs
have been introduced to improve flexion after TKR. Although the
early results of such designs were promising, recent literature
has raised concerns about the incidence of early loosening of the
femoral component. We compared the minimum force required to cause
femoral component loosening for six high-flexion and six conventional
TKR designs in a laboratory experiment. Each TKR design was implanted in a femoral bone model and placed
in a loading frame in 135° of flexion. Loosening of the femoral
component was induced by moving the tibial component at a constant
rate of displacement while maintaining the same angle of flexion.
A stereophotogrammetric system registered the relative movement
between the femoral component and the underlying bone until loosening
occurred. Compared with high-flexion designs, conventional TKR designs
required a significantly higher force before loosening occurred
(p <
0.001). High-flexion designs with closed box geometry required
significantly higher loosening forces than high-flexion designs
with open box geometry (p = 0.0478). The presence of pegs further contributed
to the fixation strength of components. We conclude that high-flexion designs have a greater risk for
femoral component loosening than conventional TKR designs. We believe
this is attributable to the absence of femoral load sharing between
the prosthetic component and the condylar bone during flexion.
The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°,
We performed a prospective, randomised trial of 44 patients to compare the functional outcomes of a posterior-cruciate-ligament-retaining and posterior-cruciate-ligament-substituting total knee arthroplasty, and to gain a better understanding of the At follow-up at five years, no statistically significant differences were found in the clinical outcome measurements for either design. The prevalence of radiolucent lines and the survivorship were the same. In a subgroup of 15 knees, additional image-intensifier analysis in the horizontal and sagittal planes was performed during step-up and lunge activity. Our analysis revealed striking differences. Lunge activity showed a mean posterior displacement of both medial and lateral tibiofemoral contact areas (roll-back) which was greater and more consistent in the cruciate-substituting than in the cruciate-retaining group (medial p <
0.0001, lateral p = 0.011). The amount of posterior displacement could predict the maximum flexion which could be achieved (p = 0.018). Forward displacement of the tibiofemoral contact area in flexion during stair activity was seen more in the cruciate-retaining than in the cruciate-substituting group. This was attributed mainly to insufficiency of the posterior cruciate ligament and partially to that of the anterior cruciate ligament. We concluded that, despite similar clinical outcomes, there are significant kinematic differences between cruciate-retaining and cruciate-substituting arthroplasties.
Our purpose was to determine the mechanism which allows the maximum knee flexion in vivo after a posterior-cruciate-ligament (PCL)-retaining total knee arthroplasty. Using three-dimensional computer-aided design videofluoroscopy of deep squatting in 29 patients, we determined that in 72% of knees, direct impingement of the tibial insert posteriorly against the back of the femur was the factor responsible for blocking further flexion. In view of this finding we defined a new parameter termed the ‘posterior condylar offset’. In 150 consecutive arthroplasties of the knee, the magnitude of posterior condylar offset was found to correlate with the final range of flexion.