header advert
Results 1 - 6 of 6
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 57-B, Issue 3 | Pages 302 - 313
1 Aug 1975
Day WH Swanson SAV Freeman MAR

The purpose of the work described was to find the average pressure on each of several areas of the acetabular cartilage of the cadaver hip under physiological loads. By obtaining load-deflection curves for one chosen area of cartilage, firstly with all the cartilage present and then after the successive removal of other areas, the fractions of the original load carried by the several areas were found, and hence the average pressures on those areas. Seventeen hips (age range twenty. two to eighty-seven years) were examined. Local pressures varied from zero to 3.4 times the average pressure in each hip. The highest pressures in the series (about 4 to 5 megaNewtons per square metre) were on areas of thin fibrocartilage which were identified at the zenith of certain acetabula. The results are too few to establish whether or not the pressure distribution was age-related. The higher pressures found are within the range which in other experiments has led to fatigue failure of femoral head cartilage, and it is suggested that hips in which such pressures exist under loads of three times body weight may be predisposed to osteoarthritis.


The Journal of Bone & Joint Surgery British Volume
Vol. 55-B, Issue 4 | Pages 759 - 773
1 Nov 1973
Swanson SAV Freeman MAR Heath JC

1. Currently available total replacement hip and knee prostheses were tested in a machine enabling flexion-extension movements to be applied whilst the prostheses were surrounded with Ringer's solution or other liquid and loaded within the physiological range.

2. Prostheses of which both components were made in cobalt-chromium-molybdenum alloy produced visible quantities of alloy particles, whose sizes ranged down to about 0·1 microns, and cobalt and molybdenum ions in solution.

3. No metallic or plastic particles were detected during tests on a hip prosthesis made of stainless steel and high density polyethylene.

4. The frictional moments in cobalt-chromium-molybdenum hip prostheses were higher than in stainless steel-polyethylene hip prostheses, by a factor of at least 2 to 1.

5. It is accepted that the conditions of these tests were probably more severe than in life, but the difference is held to be one of degree and not one of kind.

6. The particulate alloy debris, when injected in massive doses into the muscles of rats, gave an incidence of malignant tumours which was comparable to that already established for pure cobalt powder, whereas particles of several other metals, tested in the same way, gave no tumours.

7. It is argued that the particles which are known to be produced in at least some patients using cobalt-chromium-molybdenum total replacement joint prostheses constitute a risk of tumour formation which is certainly small, possibly negligible, but not accurately calculable at present.

8. The results of these tests, particularly the differences in frictional moment and in the production of particulate debris, suggest a preference for high density polyethylene as one component of a total joint replacement prosthesis.


The Journal of Bone & Joint Surgery British Volume
Vol. 54-B, Issue 4 | Pages 590 - 599
1 Nov 1972
Andersson GBJ Freeman MAR Swanson SAV

1. Prosthetic acetabular cups of the Charnley and McKee-Farrar designs were cemented into cadaveric pelves using different procedures for preparing the acetabulum.

2. The torsional moments needed to loosen these cups were measured.

3. The torsional moments so measured were found to be from about four to more than twenty times higher than the frictional moments measured in independent tests on the two designs of prosthesis.

4. It is argued that late looseness of the acetabular component after total hip replacement, in the absence of infection, seems most likely to be due to thermal damage to the bone occurring at the time of polymerisation of the cement, and to subsequent bone resorption.

5. Surgical preparation of the acetabulum should include removal of all the articular cartilage and cleaning of the acetabular fossa, but the drilling of additional holes in the floor of the acetabulum seems unimportant.

6. The possibility of fatigue fracture in bone as a factor contributing to late loosening is an argument in favour of metal-on-polyethylene prostheses with their lower frictional moments, although the importance of this factor cannot be estimated.


The Journal of Bone & Joint Surgery British Volume
Vol. 53-B, Issue 1 | Pages 136 - 143
1 Feb 1971
Griffiths WEG Swanson SAV Freeman MAR

1. Thirty-seven specimens of the proximal third of the human femur were subjected to cyclically varying loads applied in a physiological direction to the femoral head, having maximum values of from four to thirteen times body weight.

2. Ten of these specimens sustained subcapital fractures of the femoral neck after numbers of cycles of loading varying from 123 to 8,193.

3. The maximum value of cyclic load needed to give fatigue fracture after 10,000 or fewer cycles was found to vary from about twelve times the body weight at ages twenty to fifty to about five times the body weight at age seventy or more.

4. In youth and in middle age the load levels mentioned above are greater than those encountered in normal living, but are comparable to those which may be applied to the femoral head during activities known to produce "fatigue" fractures clinically in young adults.

5. In the elderly the load levels mentioned above are within the range that can be applied in normal living. It is inferred that some femoral neck fractures in the elderly may be fatigue fractures caused by the cyclic loading of normal walking.


The Journal of Bone & Joint Surgery British Volume
Vol. 51-B, Issue 4 | Pages 754 - 768
1 Nov 1969
Laurence M Freeman MAR Swanson SAV

1. The probable greatest bending moment applied to a plated or nailed fracture of the tibia during restricted weight-bearing is estimated to be, in men, up to about 79 Newton metres (58 poundsforce feet). The maximum twisting moment is estimated to be about 29 Newton metres (22 poundsforce feet).

2. Twenty-two human tibiae were loaded in three-point bending and broke at bending moments of from 57·9 to 294 Newton metres (42·7 to 216 poundsforce feet) if they had not previously been drilled; tibiae which had holes made through both cortices with a c. 3-millimetre (⅛-inch) drill broke at from 32·4 to 144 Newton metres (23·8 to 106 poundsforce feet). Tibiae loaded in torsion broke at twisting moments of from 27·5 to 892 Newton metres (20·2 to 65·8 poundsforce feet) when not drilled, 23·6 to 77·5 Newton metres (l7·3 to 57·1 poundsforce feet) when drilled.

3. When bent so as to open the fracture site, the 14-centimetre Stamm was the strongest of all the single plates tested (reaching its elastic limit at a bending moment of 17·6 Newton metres (13 poundsforce feet) and 5 degrees total angulation at 22·6 Newton metres (16·6 poundsforce feet)), while the Venable was the weakest (elastic limit 4·9 Newton metres (3·6 poundsforce feet) and 5 degrees at 7·9 Newton metres (5·8 poundsforce feet)). A 13-millimetre Küntscher nail reached its elastic limit at 42·2 Newton metres (31·1 poundsforce feet) and 5 degrees total angulation at 49 Newton metres (36 poundsforce feet).

4. In torsion the 15-centimetre Hicks was the strongest ofthe plates (elastic limit 27·5 Newton metres (20·2 poundsforce feet) and 5 degrees rotation at 16·7 Newton metres (l2·3 poundsforce feet)).

5. Küntscher nails in bones provided no dependable strength in torsion.

6. In both bending and torsion, a preparation of one Venable plate on each of the two anterior surfaces was stronger than any single plate, and was as strong as the weaker drilled tibiae.

7. The three currently available metallic materials (stainless steel, cobalt-chrome and titanium) have static mechanical properties so similar that the choice between them can be made on other grounds.

8. The highest load applied to a screw during bending tests was about half that needed to pull a screw out of even a thin-walled tibia.

9. Screws beyond four for one plate are mechanically redundant at the moment of implantation but may be necessary as an insurance against subsequent deterioration in strength.

10. Countersinks in plates are a source of significant weakness, and should preferably be as shallow as possible.

11. An unoccupied screw hole in the centre of a plate is a source of serious weakness.

12. Only the strongest implants tested were strong enough to withstand the bending or twisting moments to be expected in restricted weight-bearing. In two-plate preparations a danger is introduced by the fact that these moments are similar to those required to Ireak a drilled tibia.


The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 1 | Pages 166 - 177
1 Feb 1968
Maroudas A Bullough P Swanson SAV Freeman MAR

1. We have shown that the permeability of cartilage is the same in necropsy specimens as in the living animal. We have concluded that studies of material transport into cartilage carried out on necropsy specimens validly reflect in vivo conditions.

2. We have studied the effect of agitation of the fluid in which cartilage is immersed upon the rate of diffusion of substances into cartilage and have found that agitation increases the rate of penetration up to three or four fold. We believe that it may be inferred from this fact that the nutrition of cartilage is partly dependent on joint movement.

3. We have examined the permeability of the bone-cartilage interface to water and solutes and have found that in the adult no detectable material transfer occurs across this zone. In the child on the other hand the bone-cartilage interface appears to be permeable to water and solutes.

4. We have measured the diffusion coefficient of glucose in cartilage and have hence estimated the depth of cartilage which can be adequately supplied with glucose from the synovial fluid in the presence and absence of agitation.

5. We have examined both experimentally and theoretically the possible effect of intermittent loading on the rate of penetration of substances into cartilage. We have concluded that at low pressures intermittent loading contributes little to the material transfer into cartilage. At high pressures intermittent loading does lead to the transport of solutes into cartilage but it cannot significantly increase the rate of transfer above that attributable to normal diffusion. Loading cartilage surfaces for prolonged periods of time without allowing intermittent relaxation would be expected to lead to decreased diffusion, without any absorption of fresh fluid attributable to the action of a pump, and would thus result in an overall decrease in the rate of penetration of substances into cartilage.