Aims. It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a
A description is given of a mutation in the
Congenital pseudarthrosis of the tibia is an uncommon manifestation of neurofibromatosis type 1 (NF1), but one that remains difficult to treat due to anabolic deficiency and catabolic excess. Bone grafting and more recently recombinant human bone morphogenetic proteins (rhBMPs) have been identified as pro-anabolic stimuli with the potential to improve the outcome after surgery. As an additional pharmaceutical intervention, we describe the combined use of rhBMP-2 and the bisphosphonate zoledronic acid in a mouse model of NF1-deficient fracture repair. Fractures were generated in the distal tibiae of neurofibromatosis type 1-deficient ( When only rhBMP but no zoledronic acid was used to promote repair, 75% of fractures in These data support the concept that preventing bone loss in combination with anabolic stimulation may improve the outcome following surgical treatment for children with congenital pseudarthoris of the tibia and NF1.
We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat shock protein 70 was evaluated immunohistologically. Hyperthermia using MCLs effectively heated the targeted tumour to 45°C. The mean weight of the local tumour was significantly suppressed in the hyperthermia group (p = 0.013). The mice subjected to hyperthermia had significantly fewer lung metastases than the control mice (p = 0.005). Heat shock protein 70 was expressed in tumours treated with hyperthermia, but was not found in those tumours not exposed to hyperthermia. The results demonstrate a significant effect of hyperthermia on local tumours and reduces their potential to metastasise to the lung.
Aims. The purpose of this study was to clarify the clinical behaviour, prognosis, and optimum treatment of dedifferentiated low-grade osteosarcoma (DLOS) diagnosed based on molecular pathology. Patients and Methods. We retrospectively reviewed 13 DLOS patients (six men, seven women; median age 32 years (interquartile range (IQR) 27 to 38)) diagnosed using the following criteria: the histological coexistence of low-grade and high-grade osteosarcoma components in the lesion, and positive immunohistochemistry of
The aim of this study was to reassess the rate of neurological, psoas-related, and abdominal complications associated with L4-L5 lateral lumbar interbody fusion (LLIF) undertaken using a standardized preoperative assessment and surgical technique. This was a multicentre retrospective study involving consecutively enrolled patients who underwent L4-L5 LLIF by seven surgeons at seven institutions in three countries over a five-year period. The demographic details of the patients and the details of the surgery, reoperations and complications, including femoral and non-femoral neuropraxia, thigh pain, weakness of hip flexion, and abdominal complications, were analyzed. Neurological and psoas-related complications attributed to LLIF or posterior instrumentation and persistent symptoms were recorded at one year postoperatively.Aims
Methods
Low-grade central osteosarcoma (LGCOS), a rare type of osteosarcoma, often has misleading radiological and pathological features that overlap with those of other bone tumours, thereby complicating diagnosis and treatment. We aimed to analyze the clinical, radiological, and pathological features of patients with LGCOS, with a focus on diagnosis, treatment, and outcomes. We retrospectively analyzed the medical records of 49 patients with LGCOS (Broder’s grade 1 to 2) treated between January 1985 and December 2017 in a single institute. We examined the presence of malignant features on imaging (periosteal reaction, cortical destruction, soft-tissue invasion), the diagnostic accuracy of biopsy, surgical treatment, and oncological outcome.Aims
Methods
Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation. A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 105 colony-forming units (CFUs) of a bioluminescent strain of Aims
Methods
Bacterial infection activates neutrophils to release neutrophil extracellular traps (NETs) in bacterial biofilms of periprosthetic joint infections (PJIs). The aim of this study was to evaluate the increase in NET activation and release (NETosis) and haemostasis markers in the plasma of patients with PJI, to evaluate whether such plasma induces the activation of neutrophils, to ascertain whether increased NETosis is also mediated by reduced DNaseI activity, to explore novel therapeutic interventions for NETosis in PJI in vitro, and to evaluate the potential diagnostic use of these markers. We prospectively recruited 107 patients in the preoperative period of prosthetic surgery, 71 with a suspicion of PJI and 36 who underwent arthroplasty for non-septic indications as controls, and obtained citrated plasma. PJI was confirmed in 50 patients. We measured NET markers, inflammation markers, DNaseI activity, haemostatic markers, and the thrombin generation test (TGT). We analyzed the ability of plasma from confirmed PJI and controls to induce NETosis and to degrade in vitro-generated NETs, and explored the therapeutic restoration of the impairment to degrade NETs of PJI plasma with recombinant human DNaseI. Finally, we assessed the contribution of these markers to the diagnosis of PJI.Aims
Methods
Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Aims
Methods
Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics. Cite this article:
We have studied the ability of a range of antibiotics to penetrate intervertebral disc tissue in vitro, using a
1. Decalcified lyophilised rat bone matrix prepared by Urist's method acts as an inductor of cartilage and bone when implanted into animals of other species, namely mice, rabbits and gerbils. Induction in rabbits and gerbils was very much weaker than in the
Matrix metalloproteinases (MMPs) may have a role in the process of aseptic loosening. Doxycycline has been shown to inhibit MMPs. Our aim was to investigate the potential pharmacological effect of doxycycline on aseptic loosening. We used radiolabelled
This paper describes a study in the human femur of the relationship between cell division in growth cartilage and overall bone growth. Growth rates for the distal femur from birth to eighteen years were determined from serial radiographs available from the Harpenden Growth Study; An average of 1-4 cm/year was found for the ages of five to eight years. The development of the growth plate is illustrated in a series of photomicrographs of femur sections. These sections were also used for quantitative histology; The length of the proliferation zone was estimated from cell counts to be twenty-four cells per column. On the basis of this value and the measured growth rate, an approximate mean cycle time of twenty days was found for the proliferating cells of the human growth plate. Since the corresponding cycle time is two days for rodent growth plates, which also have a different structure, it is unwise to extrapolate the findings in this tissue from
A heavy infiltrate of foreign-body macrophages is commonly seen in the fibrous membrane which surrounds an aseptically loose cemented implant. This is in response to particles of polymethylmethacrylate (PMMA) bone cement and other biomaterials. We have previously shown that monocytes and macrophages responding to particles of bone cement are capable of differentiating into osteoclastic cells which resorb bone. To determine whether the radio-opaque additives barium sulphate (BaSO. 4. ) and zirconium dioxide (ZrO. 2. ) influence this process, particles of PMMA with and without these agents were added to
Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy. We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed.Aims
Methods
Current treatments of prosthetic joint infection (PJI) are minimally effective against The ability of PlySs2 and vancomycin to kill biofilm and colony-forming units (CFUs) on orthopaedic implants were compared using in vitro models. An in vivo murine PJI model of DAIR was used to assess the efficacy of a combination of PlySs2 and vancomycin on periprosthetic bacterial load.Aims
Methods
Although the response of macrophages to polyethylene debris has been widely studied, it has never been compared with the cellular response to ceramic debris. Our aim was to investigate the cytotoxicity of ceramic particles (Al. 2. O. 3. and ZrO. 2. ) and to analyse their ability to stimulate the release of inflammatory mediators compared with that of high-density polyethylene particles (HDP). We analysed the effects of particle size, concentration and composition using an in vitro model. The J774
This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys. Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment.Aims
Methods
Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model. Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 106 MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II.Aim
Materials and Methods
The development and pre-clinical evaluation of
nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated
with titanium dioxide (TiO2) nanotube arrays is reviewed. Cite this article:
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.
Tissue responses to debris formed by abrasion of polymethylmethacrylate
(PMMA) spacers at two-stage revision arthroplasty for prosthetic
joint infection are not well described. We hypothesised that PMMA
debris induces immunomodulation in periprosthetic tissues. Samples of tissue were taken during 35 two-stage revision arthroplasties
(nine total hip and 26 total knee arthroplasties) in patients whose
mean age was 67 years (44 to 85). Fourier transform infrared microscopy
was used to confirm the presence of PMMA particles. Histomorphometry
was performed using Sudan Red and Haematoxylin-Eosin staining.
CD-68, CD-20, CD-11(c), CD-3 and IL-17 antibodies were used to immunophenotype
the inflammatory cells. All slides were scored semi-quantitatively
using the modified Willert scoring system.Aims
Patients and Methods
The aim of this study was to evaluate the time course of changes
in parameters of diffusion tensor imaging (DTI) such as fractional
anisotropy (FA) and apparent diffusion coefficient (ADC) in patients
with symptomatic lumbar disc herniation. We also investigated the
correlation between the severity of neurological symptoms and these parameters. A total of 13 patients with unilateral radiculopathy due to herniation
of a lumbar disc were investigated with DTI on a 1.5T MR scanner
and underwent micro discectomy. There were nine men and four women,
with a median age of 55.5 years (19 to 79). The changes in the mean
FA and ADC values and the correlation between these changes and the
severity of the neurological symptoms were investigated before and
at six months after surgery. Aims
Patients and Methods
Limb salvage involving wide resection and reconstruction is now well established for managing musculoskeletal sarcomas. However, involvement of major nerves and vessels with a large volume of muscle and skin may result in a useless limb, contributing to depression and a low quality of life. We have been studying alternative treatments for musculoskeletal sarcoma since 1990, and have recently established a regime using photodynamic surgery with cells labelled with acridine orange, photodynamic therapy with cells treated similarly and radiodynamic treatment using the effect of X-rays on such cells. These techniques have been used after marginal or intralesional resection of tumours since 1999 and have enabled maintenance of excellent limb function in patients with sarcomas.
We hypothesised that cells obtained via a Reamer–Irrigator–Aspirator
(RIA) system retain substantial osteogenic potential and are at
least equivalent to graft harvested from the iliac crest. Graft
was harvested using the RIA in 25 patients (mean age 37.6 years
(18 to 68)) and from the iliac crest in 21 patients (mean age 44.6
years (24 to 78)), after which ≥ 1 g of bony particulate graft material
was processed from each. Initial cell viability was assessed using Trypan
blue exclusion, and initial fluorescence-activated cell sorting
(FACS) analysis for cell lineage was performed. After culturing
the cells, repeat FACS analysis for cell lineage was performed and
enzyme-linked immunosorbent assay (ELISA) for osteocalcin, and Alizarin
red staining to determine osteogenic potential. Cells obtained via
RIA or from the iliac crest were viable and matured into mesenchymal
stem cells, as shown by staining for the specific mesenchymal antigens
CD90 and CD105. For samples from both RIA and the iliac crest there
was a statistically significant increase in bone production (both
p <
0.001), as demonstrated by osteocalcin production after induction. Medullary autograft cells harvested using RIA are viable and
osteogenic. Cell viability and osteogenic potential were similar
between bone grafts obtained from both the RIA system and the iliac
crest. Cite this article:
The belief that an intervertebral disc must degenerate
before it can herniate has clinical and medicolegal significance,
but lacks scientific validity. We hypothesised that tissue changes
in herniated discs differ from those in discs that degenerate without
herniation. Tissues were obtained at surgery from 21 herniated discs
and 11 non-herniated discs of similar degeneration as assessed by
the Pfirrmann grade. Thin sections were graded histologically, and
certain features were quantified using immunofluorescence combined
with confocal microscopy and image analysis. Herniated and degenerated
tissues were compared separately for each tissue type: nucleus, inner
annulus and outer annulus. Herniated tissues showed significantly greater proteoglycan loss
(outer annulus), neovascularisation (annulus), innervation (annulus),
cellularity/inflammation (annulus) and expression of matrix-degrading
enzymes (inner annulus) than degenerated discs. No significant differences
were seen in the nucleus tissue from herniated and degenerated discs.
Degenerative changes start in the nucleus, so it seems unlikely
that advanced degeneration caused herniation in 21 of these 32 discs.
On the contrary, specific changes in the annulus can be interpreted
as the consequences of herniation, when disruption allows local
swelling, proteoglycan loss, and the ingrowth of blood vessels,
nerves and inflammatory cells. In conclusion, it should not be assumed that degenerative changes
always precede disc herniation. Cite this article:
We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically. Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% ( Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.
We attempted to characterise the biological quality
and regenerative potential of chondrocytes in osteochondritis dissecans
(OCD). Dissected fragments from ten patients with OCD of the knee
(mean age 27.8 years (16 to 49)) were harvested at arthroscopy.
A sample of cartilage from the intercondylar notch was taken from
the same joint and from the notch of ten patients with a traumatic
cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes
were extracted and subsequently cultured. Collagen types 1, 2, and
10 mRNA were quantified by polymerase chain reaction. Compared with
the notch chondrocytes, cells from the dissecate expressed similar
levels of collagen types 1 and 2 mRNA. The level of collagen type
10 message was 50 times lower after cell culture, indicating a loss
of hypertrophic cells or genes. The high viability, retained capacity
to differentiate and metabolic activity of the extracted cells suggests
preservation of the intrinsic repair capability of these dissecates.
Molecular analysis indicated a phenotypic modulation of the expanded
dissecate chondrocytes towards a normal phenotype. Our findings
suggest that cartilage taken from the dissecate can be reasonably
used as a cell source for chondrocyte implantation procedures.
Failure of bone repair is a challenging problem in the management of fractures. There is a limited supply of autologous bone grafts for treating nonunions, with associated morbidity after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells (MSCs) hold promise for healing of bone because of their capacity to differentiate into osteoblasts and their availability from a wide variety of sources. Our review aims to evaluate the available clinical evidence and recent progress in strategies which attempt to use autologous and heterologous MSCs in clinical practice, including genetically-modified MSCs and those grown on scaffolds. We have compared various procedures for isolating and expanding a sufficient number of MSCs for use in a clinical setting. There are now a number of clinical studies which have shown that implantation of MSCs is an effective, safe and durable method for aiding the repair and regeneration of bone.
We evaluated the possible induction of a systemic immune response to increase anti-tumour activity by the re-implantation of destructive tumour tissue treated by liquid nitrogen in a murine osteosarcoma (LM8) model. The tumours were randomised to treatment by excision alone or by cryotreatment after excision. Tissue from the tumour was frozen in liquid nitrogen, thawed in distilled water and then re-implanted in the same animal. In addition, some mice received an immunological response modifier of OK-432 after treatment. We measured the levels of interferon-gamma and interleukin-12 cytokines and the cytotoxicity activity of splenocytes against murine LM8 osteosarcoma cells. The number of lung and the size of abdominal metastases were also measured. Re-implantation of tumour tissue after cryotreatment activated immune responses and inhibited metastatic tumour growth. OK-432 synergistically enhanced the anti-tumour effect. Our results suggest that the treatment of malignant bone tumours by reconstruction using autografts containing tumours which have been treated by liquid nitrogen may be of clinical value.
We investigated the clinical outcome of internal
fixation for pathological fracture of the femur after primary excision of
a soft-tissue sarcoma that had been treated with adjuvant radiotherapy. A review of our database identified 22 radiation-induced fractures
of the femur in 22 patients (seven men, 15 women). We noted the
mechanism of injury, fracture pattern and any complications after
internal fixation, including nonunion, hardware failure, secondary
fracture or deep infection. The mean age of the patients at primary excision of the tumour
was 58.3 years (39 to 86). The mean time from primary excision to
fracture was 73.2 months (2 to 195). The mean follow-up after fracture
fixation was 65.9 months (12 to 205). Complications occurred in
19 patients (86%). Nonunion developed in 18 patients (82%), of whom
11 had a radiological nonunion at 12 months, five a nonunion and
hardware failure and two an infected nonunion. One patient developed
a second radiation-associated fracture of the femur after internal
fixation and union of the initial fracture. A total of 13 patients
(59%) underwent 24 revision operations. Internal fixation of a pathological fracture of the femur after
radiotherapy for a soft-tissue sarcoma has an extremely high rate
of complication and requires specialist attention. Cite this article:
The aim of this study was to investigate the occurrence of tissue hypoxia and apoptosis at different stages of tendinopathy and tears of the rotator cuff. We studied tissue from 24 patients with eight graded stages of either impingement (mild, moderate and severe) or tears of the rotator cuff (partial, small, medium, large and massive) and three controls. Biopsies were analysed using three immunohistochemical techniques, namely antibodies against HIF-1α (a transcription factor produced in a hypoxic environment), BNip3 (a HIF-1α regulated pro-apoptotic protein) and TUNEL (detecting DNA fragmentation in apoptosis). The HIF-1α expression was greatest in mild impingement and in partial, small, medium and large tears. BNip3 expression increased significantly in partial, small, medium and large tears but was reduced in massive tears. Apoptosis was increased in small, medium, large and massive tears but not in partial tears. These findings reveal evidence of hypoxic damage throughout the spectrum of pathology of the rotator cuff which may contribute to loss of cells by apoptosis. This provides a novel insight into the causes of degeneration of the rotator cuff and highlights possible options for treatment.
Our understanding of the origin of hip pain in
degenerative disorders of the hip, including primary osteoarthritis, avascular
necrosis and femoroacetabular impingement (FAI), is limited. We
undertook a histological investigation of the nociceptive innervation
of the acetabular labrum, ligamentum teres and capsule of the hip,
in order to prove pain- and proprioceptive-associated marker expression.
These structures were isolated from 57 patients who had undergone
elective hip surgery (44 labral samples, 33 ligamentum teres specimens,
34 capsular samples; in 19 patients all three structures were harvested).
A total of
15 000 histological sections were prepared that were investigated
immunohistochemically for the presence of protein S-100, 68 kDa
neurofilament, neuropeptide Y, nociceptin and substance P. The tissues
were evaluated in six representative areas. Within the labrum, pain-associated free nerve ending expression
was located predominantly at its base, decreasing in the periphery.
In contrast, the distribution within the ligamentum teres showed
a high local concentration in the centre. The hip capsule had an
almost homogeneous marker expression in all investigated areas. This study showed characteristic distribution profiles of nociceptive
and pain-related nerve fibres, which may help in understanding the
origin of hip pain. Cite this article:
Conventional amputation prostheses rely on the attachment of the socket to the stump, which may lead to soft-tissue complications. Intraosseous transcutaneous amputation prostheses (ITAPs) allow direct loading of the skeleton, but their success is limited by infection resulting from breaching of the skin at the interface with the implant. Keratinocytes provide the skin’s primary barrier function, while hemidesmosomes mediate their attachment to natural ITAP analogues. Keratinocytes must attach directly to the surface of the implant. We have assessed the proliferation, morphology and attachment of keratinocytes to four titaniumalloy surfaces in order to determine the optimal topography We have shown that the proliferation, morphology and attachment of keratinocytes are affected by the surface topography of the biomaterials used to support their growth. Smoother surfaces improved adhesion. We postulate that a smooth topography at the point of epithelium-ITAP contact could increase attachment
There are eight reported cases in the literature
of osteosarcomas secreting β-hCG. Our primary aim was to investigate
the rate of β-hCG expression in osteosarcoma and attempt to understand
the characteristics of osteosarcomas that secrete β-hCG. We reviewed
37 histopathology slides (14 biopsies and 23 surgical specimens) from
32 patients with osteosarcoma. The slides were retrospectively stained
for β-hCG expression. Patient and tumour characteristics, including
age, gender, tumour location, subtype, proportion of necrosis, presence
of metastases and recurrence were recorded. A total of five of the
32 tumours were found to be positive for β-hCG expression (one strongly
and four weakly). This incidence of this expression was found in
tumours with poor histological response to neoadjuvant chemotherapy. The use of β-hCG expression as a diagnostic, prognostic or follow-up
marker is questionable and needs further investigation with a larger
sample size.
We have investigated Approximately 50% of the FGF-2 was released from the sealant within 24 hours while its original bioactivity was maintained. The implantation of the fibrin sealant incorporating FGF-2 successfully induced healing of the surface with hyaline cartilage and concomitant repair of the subchondral bone at eight weeks after the creation of the defect. Our findings suggest that this delivery method for FGF-2 may be useful for promoting regenerative repair of full-thickness defects of articular cartilage in humans.
The success of long-term transcutaneous implants
depends on dermal attachment to prevent downgrowth of the epithelium
and infection. Hydroxyapatite (HA) coatings and fibronectin (Fn)
have independently been shown to regulate fibroblast activity and
improve attachment. In an attempt to enhance this phenomenon we
adsorbed Fn onto HA-coated substrates. Our study was designed to
test the hypothesis that adsorption of Fn onto HA produces a surface
that will increase the attachment of dermal fibroblasts better than
HA alone or titanium alloy controls. Iodinated Fn was used to investigate the durability of the protein
coating and a bioassay using human dermal fibroblasts was performed
to assess the effects of the coating on cell attachment. Cell attachment
data were compared with those for HA alone and titanium alloy controls
at one, four and 24 hours. Protein attachment peaked within one
hour of incubation and the maximum binding efficiency was achieved
with an initial droplet of 1000 ng. We showed that after 24 hours
one-fifth of the initial Fn coating remained on the substrates,
and this resulted in a significant, three-, four-, and sevenfold
increase in dermal fibroblast attachment strength compared to uncoated controls
at one, four and 24 hours, respectively.
Platelet-derived growth factor (PDGF) is known
to stimulate osteoblast or osteoprogenitor cell activity. We investigated
the effect of locally applied PDGF from poly- These results indicate that local application of PDGF from biodegradable
PDLLA-coated implants significantly accelerates fracture healing
in experimental animals. Further development may help fracture healing
in the clinical situation.
Linburg-Comstock syndrome is characterised by an anomalous tendon slip from the flexor pollicis longus to the flexor digitorum profundus, usually of the index finger. An incidence as high as 60% to 70% has been reported. Post-traumatic inflammation of inter-tendinous connections between the flexor pollicis longus and flexor digitorum profundus, usually of the index finger, may cause unexplained chronic pain in the distal forearm. A total of 11 patients (eight females, three males), mean age 29.1 years (14 to 47) with a clinical diagnosis of Linburg-Comstock syndrome underwent surgical release of the inter-tendinous connection. The mean follow-up was for 27 months (2 to 48). Ten patients reported excellent relief of pain in the forearm, with independent flexion of flexor pollicis longus and flexor digitorum profundus to the index finger. Surgical release was an effective treatment for the Linburg-Comstock syndrome in this series.
Bacterial infection in orthopaedic surgery can be devastating, and is associated with significant morbidity and poor functional outcomes, which may be improved if high concentrations of antibiotics can be delivered locally over a prolonged period of time. The two most widely used methods of doing this involve antibiotic-loaded polymethylmethacrylate or collagen fleece. The former is not biodegradable and is a surface upon which secondary bacterial infection may occur. Consequently, it has to be removed once treatment has finished. The latter has been used successfully as an adjunct to systemic antibiotics, but cannot effect a sustained release that would allow it to be used on its own, thereby avoiding systemic toxicity. This review explores the newer biodegradable carrier systems which are currently in the experimental phase of development and which may prove to be more effective in the treatment of osteomyelitis.
We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage.
While the evolution of the bony skeleton of the shoulder girdle is well described, there is little information regarding the soft tissues, in particular of the rotator cuff. We dissected the shoulders of 23 different species and compared the anatomical features of the tendons of the rotator cuff. The alignment and orientation of the collagen fibres of some of the tendons were also examined histologically. The behaviour of the relevant species was studied, with particular reference to the extent and frequency of forward-reaching and overhead activity of the forelimb. In quadrupedal species, the tendons of supraspinatus, infraspinatus and teres minor were seen to insert into the greater tuberosity of the humerus separately. They therefore did not form a true rotator cuff with blending of the tendons. This was only found in advanced primates and in one unusual species, the tree kangaroo. These findings support the suggestion that the appearance of the rotator cuff in the evolutionary process parallels anatomical adaptation to regular overhead activity and the increased use of the arm away from the sagittal plane.
We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.
The haematoma occurring at the site of a fracture is known to play an important role in bone healing. We have recently shown the presence of progenitor cells in human fracture haematoma and demonstrated that they have the capacity for multilineage mesenchymal differentiation. There have been many studies which have shown that low-intensity pulsed ultrasound (LIPUS) stimulates the differentiation of a variety of cells, but none has investigated the effects of LIPUS on cells derived from human fracture tissue including human fracture haematoma-derived progenitor cells (HCs). In this
In an adult man the mean femoral anteversion angle measures approximately 15°, for which the reasons have never been fully elucidated. An assortment of simian and quadruped mammalian femora was therefore examined and the anteversion angles measured. A simple static mathematical model was then produced to explain the forces acting on the neck of the femur in the quadruped and in man. Femoral anteversion was present in all the simian and quadruped femora and ranged between 4° and 41°. It thus appears that man has retained this feature despite evolving from quadrupedal locomotion. Quadrupeds generally mobilise with their hips flexed forwards from the vertical; in this position, it is clear that anteversion gives biomechanical advantage against predominantly vertical forces. In man with mobilisation on vertical femora, the biomechanical advantage of anteversion is against forces acting mainly in the horizontal plane. This has implications in regard to the orientation of hip replacements.
Post-natal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells migrate, differentiate and incorporate into the nacent endothelium and thereby contribute to physiological and pathological neurovascularisation, has stimulated much interest. Its contribution to neovascularisation of tumours, wound healing and revascularisation associated with ischaemia of skeletal and cardiac muscles is well established. We evaluated the responses of endothelial precursor cells in bone marrow to musculoskeletal trauma in mice. Bone marrow from six C57 Black 6 mice subjected to a standardised, closed fracture of the femur, was analysed for the combined expression of cell-surface markers stem cell antigen 1 (sca-1+) and stem cell factor receptor, CD117 (c-kit+) in order to identify the endothelial precursor cell population. Immunomagnetically-enriched sca-1+ mononuclear cell (MNCsca-1+) populations were then cultured and examined for functional vascular endothelial differentiation. Bone marrow MNCsca-1+,c-kit+ counts increased almost twofold within 48 hours of the event, compared with baseline levels, before decreasing by 72 hours. Sca-1+ mononuclear cell populations in culture from samples of bone marrow at 48 hours bound together Ulex Europus-1, and incorporated fluorescent 1,1′-dioctadecyl- 3,3,3,’3′-tetramethylindocarbocyanine perchlorate-labelled acetylated low-density lipoprotein intracellularily, both characteristics of mature endothelium. Our findings suggest that a systemic provascular response of bone marrow is initiated by musculoskeletal trauma. Its therapeutic manipulation may have implications for the potential enhancement of neovascularisation and the healing of fractures.
We prospectively assessed the benefits of using either a range-of-movement technique or an anatomical landmark method to determine the rotational alignment of the tibial component during total knee replacement. We analysed the cut proximal tibia intraoperatively, determining anteroposterior axes by the range-of-movement technique and comparing them with the anatomical anteroposterior axis. We found that the range-of-movement technique tended to leave the tibial component more internally rotated than when anatomical landmarks were used. In addition, it gave widely variable results (mean 7.5°; 2° to 17°), determined to some extent by which posterior reference point was used. Because of the wide variability and the possibilities for error, we consider that it is inappropriate to use the range-of-movement technique as the sole method of determining alignment of the tibial component during total knee replacement.
We studied bone-tendon healing using immunohistochemical methods in a rabbit model. Reconstruction of the anterior cruciate ligament was undertaken using semitendinosus tendon in 20 rabbits. Immunohistochemical evaluations were performed at one, two, four and eight weeks after the operation. The expression of CD31, RAM-11, VEGF, b-FGF, S-100 protein and collagen I, II and III in the bone-tendon interface was very similar to that in the endochondral ossification. Some of the type-III collagen in the outer layer of the graft, which was deposited at a very early phase after the operation, was believed to have matured into Sharpey-like fibres. However, remodelling of the tendon grafted into the bone tunnel was significantly delayed when compared with this ossification process. To promote healing, we believe that it is necessary to accelerate remodelling of the tendon, simultaneously with the augmentation of the ossification.
Little is known about the increase in length of tendons in postnatal life or of their response to limb lengthening procedures. A study was carried out in ten young and nine adult rabbits in which the tibia was lengthened by 20% at two rates 0.8 mm/day and 1.6 mm/day. The tendon of the flexor digitorum longus (FDL) muscle showed a significant increase in length in response to lengthening of the tibia. The young rabbits exhibited a significantly higher increase in length in the FDL tendon compared with the adults. There was no difference in the amount of lengthening of the FDL tendon at the different rates. Of the increase in length which occurred, 77% was in the proximal half of the tendon. This investigation demonstrated that tendons have the ability to lengthen during limb distraction. This occurred to a greater extent in the young who showed a higher proliferative response, suggesting that there may be less need for formal tendon lengthening in young children.
We compared the biological characteristics of extrinsic fibroblasts infiltrating the patellar tendon with those of normal, intrinsic fibroblasts in the normal tendon Proliferation and invasive migration into the patellar tendon was significantly slower for infiltrative fibroblasts than for normal tendon fibroblasts. Flow-cytometric analysis indicated that expression of α5β1 integrin at the cell surface was significantly lower in infiltrative fibroblasts than in normal tendon fibroblasts. The findings suggest that cellular proliferation and invasive migration of fibroblasts into the patellar tendon after necrosis are inferior to those of the normal fibroblasts. The inferior intrinsic properties of infiltrative fibroblasts may contribute to a slow remodelling process in the grafted tendon after ligament reconstruction.
The literature on fracture repair has been reviewed. The traditional concepts of delayed and nonunion have been examined in terms of the phased and balanced anabolic and catabolic responses in bone repair. The role of medical manipulation of these inter-related responses in the fracture healing have been considered.
Sex hormones play important roles in the regulation of the proliferation, maturation and death of chondrocytes in the epiphyseal growth plate. We have investigated the effects of male castration on the cell kinetics of chondrocytes as defined by the numbers of proliferating and dying cells. The growth plates of normal rabbits and animals castrated at eight weeks of age were obtained at 10, 15, 20 and 25 weeks of age. Our study suggested that castration led to an increase in apoptosis and a decrease in the proliferation of chondrocytes in the growth plate. In addition, the number of chondrocytes in the castrated rabbits was less than that of normal animals of the same age.
Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.
Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined. The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p <
0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment.
The subject of central nervous system damage includes a wide variety of problems, from the slow selective ‘picking off’ of characteristic sub-populations of neurons typical of neurodegenerative diseases, to the wholesale destruction of areas of brain and spinal cord seen in traumatic injury and stroke. Experimental repair strategies are diverse and the type of pathology dictates which approach will be appropriate. Damage may be to grey matter (loss of neurons), white matter (cutting of axons, leaving neurons otherwise intact, at least initially) or both. This review will consider four possible forms of treatment for repair of the human central nervous system.
Discogenic low back pain is a common cause of disability, but its pathogenesis is poorly understood. We collected 19 specimens of lumbar intervertebral discs from 17 patients with discogenic low back pain during posterior lumbar interbody fusion, 12 from physiologically ageing discs and ten from normal control discs. We investigated the histological features and assessed the immunoreactive activity of neurofilament (NF200) and neuropeptides such as substance P (SP) and vasoactive-intestinal peptide (VIP) in the nerve fibres. The distinct histological characteristic of the painful disc was the formation of a zone of vascularised granulation tissue from the nucleus pulposus to the outer part of the annulus fibrosus along the edges of the fissures. SP-, NF- and VIP-immunoreactive nerve fibres in the painful discs were more extensive than in the control discs. Growth of nerves deep into the annulus fibrosus and nucleus pulposus was observed mainly along the zone of granulation tissue in the painful discs. This suggests that the zone of granulation tissue with extensive innervation along the tears in the posterior part of the painful disc may be responsible for causing the pain of discography and of discogenic low back pain.
In an attempt to increase the life of cementless prostheses, an hydroxyapatite-coated implant which releases a bisphosphonate has been suggested as a drug-delivery system. Our Our findings demonstrated that zoledronate did not impair the proliferation of human osteoblasts when used at concentrations below 1 μ A concentration of 0.01% of titanium particles did not impair the proliferation of either cell line. Zoledronate affected the alkaline phosphatase activity of murine osteoblasts through a chelation phenomenon. The presence of titanium particles strongly decreased the alkaline phosphatase activity of murine osteoblasts. We did not detect any synergic effect of zoledronate and titanium particles on the behaviour of both human and murine osteoblasts.
We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone. Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group. These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment.
We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel. The histological scores were significantly higher in the groups with ACBMT collagen gel (p <
0.05). The area of regenerated soft tissue was smaller in the group allowed to bear weight (p <
0.05). These findings suggest that the repair of large defects of cartilage can be enhanced by joint distraction, collagen gel and ACBMT.