Advertisement for orthosearch.org.uk
Results 1 - 74 of 74
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 914 - 920
1 Jul 2011
Rogers BA Middleton FR Shearwood-Porter N Kinch S Roques A Bradley NW Browne M

Two-stage revision surgery for infected total knee replacement offers the highest rate of success for the elimination of infection. The use of articulating antibiotic-laden cement spacers during the first stage to eradicate infection also allows protection of the soft tissues against excessive scarring and stiffness. We have investigated the effect of cyclical loading of cement spacers on the elution of antibiotics. Femoral and tibial spacers containing vancomycin at a constant concentration and tobramycin of varying concentrations were studied in vitro. The specimens were immersed and loaded cyclically to 250 N, with a flexion excursion of 45°, for 35 000 cycles. The buffered solution was sampled at set intervals and the antibiotic concentration was established so that the elution could be calculated. Unloaded samples were used as a control group for statistical comparison. The elution of tobramycin increased proportionately with its concentration in cement and was significantly higher at all sampling times from five minutes to 1680 minutes in loaded components compared with the control group (p = 0.021 and p = 0.003, respectively). A similar trend was observed with elution of vancomycin, but this failed to reach statistical significance at five, 1320 and 1560 minutes (p = 0.0508, p = 0.067 and p = 0.347, respectively). However, cyclically loaded and control components showed an increased elution of vancomycin with increasing tobramycin concentration in the specimens, despite all components having the same vancomycin concentration. The concentration of tobramycin influences both tobramycin and vancomycin elution from bone cement. Cyclical loading of the cement spacers enhanced the elution of vancomycin and tobramycin


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 241 - 248
1 Feb 2012
Firoozabadi R McDonald E Nguyen T Buckley JM Kandemir U

Filling the empty holes in peri-articular locking plates may improve the fatigue strength of the fixation. The purpose of this in vitro study was to investigate the effect of plugging the unused holes on the fatigue life of peri-articular distal femoral plates used to fix a comminuted supracondylar fracture model.

A locking/compression plate was applied to 33 synthetic femurs and then a 6 cm metaphyseal defect was created (AO Type 33-A3). The specimens were then divided into three groups: unplugged, plugged with locking screw only and fully plugged holes. They were then tested using a stepwise or run-out fatigue protocol, each applying cyclic physiological multiaxial loads.

All specimens in the stepwise group failed at the 770 N load level. The mean number of cycles to failure for the stepwise specimen was 25 500 cycles (sd 1500), 28 800 cycles (sd 6300), and 26 400 cycles (sd 2300) cycles for the unplugged, screw only and fully plugged configurations, respectively (p = 0.16). The mean number of cycles to failure for the run-out specimens was 42 800 cycles (sd 10 700), 36 000 cycles (sd 7200), and 36 600 cycles (sd 10 000) for the unplugged, screw only and fully plugged configurations, respectively (p = 0.50). There were also no differences in axial or torsional stiffness between the constructs. The failures were through the screw holes at the level of comminution.

In conclusion, filling the empty combination locking/compression holes in peri-articular distal femur locking plates at the level of supracondylar comminution does not increase the fatigue life of the fixation in a comminuted supracondylar femoral fracture model (AO 33-A3) with a 6 cm gap.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1257 - 1263
1 Sep 2006
Richter M Droste P Goesling T Zech S Krettek C

Different calcaneal plates with locked screws were compared in an experimental model of a calcaneal fracture. Four plate models were tested, three with uniaxially-locked screws (Synthes, Newdeal, Darco), and one with polyaxially-locked screws (90° ± 15°) (Rimbus). Synthetic calcanei were osteotomised to create a fracture model and then fixed with the plates and screws. Seven specimens for each plate model were subjected to cyclic loading (preload 20 N, 1000 cycles at 800 N, 0.75 mm/s), and load to failure (0.75 mm/s). During cyclic loading, the plate with polyaxially-locked screws (Rimbus) showed significantly lower displacement in the primary loading direction than the plates with uniaxially-locked screws (mean values of maximum displacement during cyclic loading: Rimbus, 3.13 mm (. sd. 0.68); Synthes, 3.46 mm (. sd. 1.25); Darco, 4.48 mm (. sd. 3.17); Newdeal, 5.02 mm (. sd. 3.79); one-way analysis of variance, p < 0.001). The increased stability of a plate with polyaxially-locked screws demonstrated during cyclic loading compared with plates with uniaxially-locked screws may be beneficial for clinical use


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1259 - 1264
1 Sep 2011
Wähnert D Windolf M Brianza S Rothstock S Radtke R Brighenti V Schwieger K

We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm. 3. ) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 20 - 26
1 Jul 2020
Romero J Wach A Silberberg S Chiu Y Westrich G Wright TM Padgett DE

Aims. This combined clinical and in vitro study aimed to determine the incidence of liner malseating in modular dual mobility (MDM) constructs in primary total hip arthroplasties (THAs) from a large volume arthroplasty centre, and determine whether malseating increases the potential for fretting and corrosion at the modular metal interface in malseated MDM constructs using a simulated corrosion chamber. Methods. For the clinical arm of the study, observers independently reviewed postoperative radiographs of 551 primary THAs using MDM constructs from a single manufacturer over a three-year period, to identify the incidence of MDM liner-shell malseating. Multivariable logistic regression analysis was performed to identify risk factors including age, sex, body mass index (BMI), cup design, cup size, and the MDM case volume of the surgeon. For the in vitro arm, six pristine MDM implants with cobalt-chrome liners were tested in a simulated corrosion chamber. Three were well-seated and three were malseated with 6° of canting. The liner-shell couples underwent cyclic loading of increasing magnitudes. Fretting current was measured throughout testing and the onset of fretting load was determined by analyzing the increase in average current. Results. The radiological review identified that 32 of 551 MDM liners (5.8%) were malseated. Malseating was noted in all of the three different cup designs. The incidence of malseating was significantly higher in low-volume MDM surgeons than high-volume MDM surgeons (p < 0.001). Pristine well-seated liners showed significantly lower fretting current values at all peak loads greater than 800 N (p < 0.044). Malseated liner-shell couples had lower fretting onset loads at 2,400 N. Conclusion. MDM malseating remains an issue that can occur in at least one in 20 patients at a high-volume arthroplasty centre. The onset of fretting and increased fretting current throughout loading cycles suggests susceptibility to corrosion when this occurs. These results support the hypothesis that malseated liners may be at risk for fretting corrosion. Clinicians should be aware of this phenomenon. Cite this article: Bone Joint J 2020;102-B(7 Supple B):20–26


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1175 - 1181
1 Sep 2018
Benca E Willegger M Wenzel F Hirtler L Zandieh S Windhager R Schuh R

Aims. The traditional transosseus flexor hallucis longus (FHL) tendon transfer for patients with Achilles tendinopathy requires two incisions to harvest a long tendon graft. The use of a bio-tenodesis screw enables a short graft to be used and is less invasive, but lacks supporting evidence about its biomechanical behaviour. We aimed, in this study, to compare the strength of the traditional transosseus tendon-to-tendon fixation with tendon-to-bone fixation using a tenodesis screw, in cyclical loading and ultimate load testing. Materials and Methods. Tendon grafts were undertaken in 24 paired lower-leg specimens and randomly assigned in two groups using fixation with a transosseus suture (suture group) or a tenodesis screw (screw group). The biomechanical behaviour was evaluated using cyclical and ultimate loading tests. The Student’s t-test was performed to assess statistically significant differences in bone mineral density (BMD), displacement, the slope of the load-displacement curves, and load to failure. Results. The screw group showed less displacement (loosening) during cyclical loading, which was significant during 300, 500, 600, 700, 800, 900, and 1000 cycles (p < 0.05: other cycles: 0.079 < p < 0.402). Compared with the suture group, the screw group had higher mean ultimate load values (133.6 N, . sd. 73.5 vs 110.1 N,. sd. 46.2; p = 0.416). Conclusion. Fixation of the FHL tendon with a tenodesis screw enables a less invasive procedure to be undertaken and shows similar biomechanical behaviour and primary strength compared with fixation using a transosseus suture. Cite this article: Bone Joint J 2018;100-B:1175–81


The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 95 - 100
1 Jan 2018
Evers J Fischer M Zderic I Wähnert D Richards RG Gueorguiev B Raschke MJ Ochman S

Aims. The aim of this study was to investigate the effect of a posterior malleolar fragment (PMF), with < 25% ankle joint surface, on pressure distribution and joint-stability. There is still little scientific evidence available to advise on the size of PMF, which is essential to provide treatment. To date, studies show inconsistent results and recommendations for surgical treatment date from 1940. Materials and Methods. A total of 12 cadaveric ankles were assigned to two study groups. A trimalleolar fracture was created, followed by open reduction and internal fixation. PMF was fixed in Group I, but not in Group II. Intra-articular pressure was measured and cyclic loading was performed. Results. Contact area decreased following each fracture, while anatomical fixation restored it nearly to its intact level. Contact pressure decreased significantly with fixation of the PMF. In plantarflexion, the centre of force shifted significantly posteriorly in Group II and anteriorly in Group I. Load to failure testing showed no difference between the groups. Conclusion. Surgical reduction of a small PMF with less than 25% ankle joint surface improves pressure distribution but does not affect ankle joint stability. Cite this article: Bone Joint J 2018;100-B:95–100


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 3 | Pages 411 - 415
1 Mar 2006
Challis MJ Gaston P Wilson K Jull GA Crawford R

The aim of this randomised, controlled in vivo study in an ovine model was to investigate the effect of cylic pneumatic pressure on fracture healing. We performed a transverse osteotomy of the right radius in 37 sheep. They were randomised to a control group or a treatment group where they received cyclic loading of the osteotomy by the application of a pressure cuff around the muscles of the proximal forelimb. Sheep from both groups were killed at four or six weeks. Radiography, ultrasonography, biomechanical testing and histomorphometry were used to assess the differences between the groups. The area of periosteal callus, peak torsional strength, fracture stiffness, energy absorbed over the first 10° of torsion and histomorphometric analysis all showed that the osteotomies treated with the cyclic pneumatic pressure at four weeks were not significantly different from the control osteotomies at six weeks


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 294 - 298
1 Feb 2021
Hadeed MM Prakash H Yarboro SR Weiss DB

Aims. The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. Methods. A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals. Results. The spiral and oblique fracture patterns withstood simulated weight-bearing with minimal displacement. The multifragmented model had early implant failure with breaking of the distal locking screws. The spiral fracture model shortened by a mean of 0.3 mm (SD 0.2), and developed a mean coronal angulation of 2.0° (SD 1.9°) and a mean sagittal angulation of 1.2° (SD 1.1°). On average, 88% of the shortening, 74% of the change in coronal alignment, and 75% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. The oblique fracture model shortened by a mean of 0.2 mm (SD 0.1) and developed a mean coronal angulation of 2.4° (SD 1.6°) and a mean sagittal angulation of 2.6° (SD 1.4°). On average, 44% of the shortening, 39% of the change in coronal alignment, and 79% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. Conclusion. For spiral and oblique fracture patterns, simulated weight-bearing resulted in a clinically acceptable degree of displacement. Most displacement occurred early in the test period, and the rate of displacement decreased over time. Based on this model, we offer evidence that early weight-bearing appears safe for well reduced oblique and spiral fractures, but not in multifragmented patterns that have poor bone contact. Cite this article: Bone Joint J 2021;103-B(2):294–298


The Journal of Bone & Joint Surgery British Volume
Vol. 53-B, Issue 1 | Pages 136 - 143
1 Feb 1971
Griffiths WEG Swanson SAV Freeman MAR

1. Thirty-seven specimens of the proximal third of the human femur were subjected to cyclically varying loads applied in a physiological direction to the femoral head, having maximum values of from four to thirteen times body weight. 2. Ten of these specimens sustained subcapital fractures of the femoral neck after numbers of cycles of loading varying from 123 to 8,193. 3. The maximum value of cyclic load needed to give fatigue fracture after 10,000 or fewer cycles was found to vary from about twelve times the body weight at ages twenty to fifty to about five times the body weight at age seventy or more. 4. In youth and in middle age the load levels mentioned above are greater than those encountered in normal living, but are comparable to those which may be applied to the femoral head during activities known to produce "fatigue" fractures clinically in young adults. 5. In the elderly the load levels mentioned above are within the range that can be applied in normal living. It is inferred that some femoral neck fractures in the elderly may be fatigue fractures caused by the cyclic loading of normal walking


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 545 - 551
1 Apr 2009
Schnurr C Nessler J Meyer C Schild HH Koebke J König DP

The aim of our study was to investigate whether placing of the femoral component of a hip resurfacing in valgus protected against spontaneous fracture of the femoral neck. We performed a hip resurfacing in 20 pairs of embalmed femora. The femoral component was implanted at the natural neck-shaft angle in the left femur and with a 10° valgus angle on the right. The bone mineral density of each femur was measured and CT was performed. Each femur was evaluated in a materials testing machine using increasing cyclical loads. In specimens with good bone quality, the 10° valgus placement of the femoral component had a protective effect against fractures of the femoral neck. An adverse effect was detected in osteoporotic specimens. When resurfacing the hip a valgus position of the femoral component should be achieved in order to prevent fracture of the femoral neck. Patient selection remains absolutely imperative. In borderline cases, measurement of bone mineral density may be indicated


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 315 - 319
1 Feb 2010
Lalliss SJ Branstetter JG

Using an osteotomy of the olecranon as a model of a transverse fracture in 22 cadaver elbows we determined the ability of three different types of suture and stainless steel wire to maintain reduction when using a tension-band technique to stabilise the bone. Physiological cyclical loading simulating passive elbow movement (15 N) and using the arms to push up from a chair (450 N) were applied using an Instron materials testing machine whilst monitoring the osteotomy site with a video extensometer. Each osteotomy was repaired by one of four materials, namely, Stainless Steel Wire (7), No 2 Ethibond (3), No 5 Ethibond (5), or No 2 FiberWire (7). There were no failures (movement of > 2 mm) with stainless steel wire or FiberWire and no significant difference in the movements measured across the site of the osteotomy (p = 0.99). The No. 2 Ethibond failed at 450 N and two of the five of No. 5 Ethibond sutures had a separation of > 2 mm at 450 N. FiberWire as the tension band in this model held the reduction as effectively as stainless steel wire and may reduce the incidence of discomfort from the hardware. On the basis of our findings we suggest that a clinical trial should be undertaken


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 832 - 836
1 Jun 2006
Barker R Takahashi T Toms A Gregson P Kuiper JH

The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture. Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem. Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment


The Journal of Bone & Joint Surgery British Volume
Vol. 54-B, Issue 4 | Pages 723 - 728
1 Nov 1972
Todd RC Freeman MAR Pirie CJ

1. The femoral head has been examined in specimens taken from cadavers, patients suffering subcapital fracture of the femoral neck and patients undergoing total replacement arthroplasty for osteoarthrosis and rheumatoid arthritis. 2. Lesions have been seen, some of which appear to be uniting fatigue fractures of individual trabeculae. 3. It is suggested that excessive cyclical loading, sometimes leading to fatigue fractures, may represent a fundamental pathological process of general importance in the evolution of certain skeletal and articular diseases


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 220 - 223
1 Mar 2024
Kayani B Luo TD Haddad FS


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 261 - 268
1 Mar 2023
Ruhr M Huber G Niki Y Lohner L Ondruschka B Morlock MM

Aims

The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure.

Methods

Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans.


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 3 | Pages 484 - 489
1 May 1995
Won C Hearn T Tile M

Adult human cadaver pelves were tested to determine micromotion at the prosthesis-bone interface in cementless hemispherical acetabular components during simulated single-limb stance. The micromotion of non-press-fit components with screw fixation in response to cyclic loads to a maximum of 1500N was compressive (interface closing) at the superior iliac rim and distractive (interface opening) at the inferior ischial rim; that of press-fit components was compressive all around the acetabular rim regardless of screw fixation. Adding screws to the component decreased the micromotion at the site of the screw, but sometimes increased it at the opposite side. Two dome screws with the press-fit component decreased the micromotion at the superior iliac rim but at the inferior ischial rim there was either no change or increased movement. A press-fit cup shows less micromotion than a non-press-fit cup with screw fixation. The addition of screws to a press-fit cup does not necessarily increase the initial stability


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 112 - 123
1 Feb 2023
Duckworth AD Carter TH Chen MJ Gardner MJ Watts AC

Despite being one of the most common injuries around the elbow, the optimal treatment of olecranon fractures is far from established and stimulates debate among both general orthopaedic trauma surgeons and upper limb specialists. It is almost universally accepted that stable non-displaced fractures can be safely treated nonoperatively with minimal specialist input. Internal fixation is recommended for the vast majority of displaced fractures, with a range of techniques and implants to choose from. However, there is concern regarding the complication rates, largely related to symptomatic metalwork resulting in high rates of implant removal. As the number of elderly patients sustaining these injuries increases, we are becoming more aware of the issues associated with fixation in osteoporotic bone and the often fragile soft-tissue envelope in this group. Given this, there is evidence to support an increasing role for nonoperative management in this high-risk demographic group, even in those presenting with displaced and/or multifragmentary fracture patterns. This review summarizes the available literature to date, focusing predominantly on the management techniques and available implants for stable fractures of the olecranon. It also offers some insights into the potential avenues for future research, in the hope of addressing some of the pertinent questions that remain unanswered.

Cite this article: Bone Joint J 2023;105-B(2):112–123.


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 2 | Pages 232 - 235
1 Mar 1995
Liu S Kabo J Osti L

We measured the initial fixation strength of a new graft, bone-hamstring-bone (BHB), for reconstruction of the anterior cruciate ligament (ACL) in 79 porcine knees and compared it with that of the normal porcine ACL and of the bone-patellar tendon-bone (BPB) graft. All specimens were subjected to ultimate load to failure and cyclic loading tests to assess the amount of graft slippage. The ultimate load to failure for the intact ACL was 1266 +/- 250 N, for the BPB graft 663 +/- 192 N and for the BHB graft 354 +/- 92 N (p < 0.01). After cycling to 235 N (the maximum load for all groups without failure) the average residual displacements after removal of the load for the ACL, BPB and BHB grafts were 0.031 +/- 0.013 cm, 0.078 +/- 0.033 cm, and 0.322 +/- 0.222 cm, respectively (p < 0.01). For the BHB graft the load to failure was less and the amount of graft slippage was more than for the BPB graft. Neither form of reconstruction was as strong as the intact ACL


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 436 - 444
1 Apr 2000
van Loon CJM de Waal Malefijt MC Buma P Stolk PWT Verdonschot N Tromp AM Huiskes R Barneveld A

The properties of impacted morsellised bone graft (MBG) in revision total knee arthroplasty (TKA) were studied in 12 horses. The left hind metatarsophalangeal joint was replaced by a human TKA. The horses were then randomly divided into graft and control groups. In the graft group, a unicondylar, lateral uncontained defect was created in the third metatarsal bone and reconstructed using autologous MBG before cementing the TKA. In the control group, a cemented TKA was implanted without the bone resection and grafting procedure. After four to eight months, the animals were killed and a biomechanical loading test was performed with a cyclic load equivalent to the horse’s body-weight to study mechanical stability. After removal of the prosthesis, the distal third metatarsal bone was studied radiologically, histologically and by quantitative and micro CT. Biomechanical testing showed that the differences in deformation between the graft and the control condyles were not significant for either elastic or time-dependent deformations. The differences in bone mineral density (BMD) between the graft and the control condyles were not significant. The BMD of the MBG was significantly lower than that in the other regions in the same limb. Micro CT showed a significant difference in the degree of anisotropy between the graft and host bone, even although the structure of the area of the MBG had trabecular orientation in the direction of the axial load. Histological analysis revealed that all the grafts were revascularised and completely incorporated into a new trabecular structure with few or no remnants of graft. Our study provides a basis for the clinical application of this technique with MBG in revision TKA


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 833 - 843
1 Jul 2022
Kayani B Baawa-Ameyaw J Fontalis A Tahmassebi J Wardle N Middleton R Stephen A Hutchinson J Haddad FS

Aims

This study reports the ten-year wear rates, incidence of osteolysis, clinical outcomes, and complications of a multicentre randomized controlled trial comparing oxidized zirconium (OxZr) versus cobalt-chrome (CoCr) femoral heads with ultra-high molecular weight polyethylene (UHMWPE) and highly cross-linked polyethylene (XLPE) liners in total hip arthroplasty (THA).

Methods

Patients undergoing primary THA were recruited from four institutions and prospectively allocated to the following treatment groups: Group A, CoCr femoral head with XLPE liner; Group B, OxZr femoral head with XLPE liner; and Group C, OxZr femoral head with UHMWPE liner. All study patients and assessors recording outcomes were blinded to the treatment groups. The outcomes of 262 study patients were analyzed at ten years’ follow-up.


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 212 - 220
1 Feb 2022
Fishley WG Selvaratnam V Whitehouse SL Kassam AM Petheram TG

Aims

Femoral cement-in-cement revision is a well described technique to reduce morbidity and complications in hip revision surgery. Traditional techniques for septic revision of hip arthroplasty necessitate removal of all bone cement from the femur. In our two centres, we have been using a cement-in-cement technique, leaving the distal femoral bone cement in selected patients for septic hip revision surgery, both for single and the first of two-stage revision procedures. A prerequisite for adoption of this technique is that the surgeon considers the cement mantle to be intimately fixed to bone without an intervening membrane between cement and host bone. We aim to report our experience for this technique.

Methods

We have analyzed patients undergoing this cement-in-cement technique for femoral revision in infection, and present a consecutive series of 89 patients. Follow-up was undertaken at a mean of 56.5 months (24.0 to 134.7) for the surviving cases.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 271 - 277
1 Feb 2009
Toms AD Barker RL McClelland D Chua L Spencer-Jones R Kuiper J

The treatment of bony defects of the tibia at the time of revision total knee replacement is controversial. The place of compacted morsellised bone graft is becoming established, particularly in contained defects. It has previously been shown that the initial stability of impaction-grafted trays in the contained defects is equivalent to that of an uncemented primary knee replacement. However, there is little biomechanical evidence on which to base a decision in the treatment of uncontained defects. We undertook a laboratory-based biomechanical study comparing three methods of graft containment in segmental medial tibial defects and compared them with the use of a modular metal augment to bypass the defect. Using resin models of the proximal tibia with medial defects representing either 46% or 65% of the medial cortical rim, repair of the defect was accomplished using mesh, cement or a novel bag technique, after which impaction bone grafting was used to fill the contained defects and a tibial component was cemented in place. As a control, a cemented tibial component with modular metal augments was used in identical defects. All specimens were submitted to cyclical mechanical loading, during which cyclical and permanent tray displacement were determined. The results showed satisfactory stability with all the techniques except the bone bag method. Using metal augments gave the highest initial stability, but obviously lacked any potential for bone restoration


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1479 - 1487
1 Sep 2021
Davis ET Pagkalos J Kopjar B

Aims

The aim of our study was to investigate the effect of asymmetric crosslinked polyethylene liner use on the risk of revision of cementless and hybrid total hip arthroplasties (THAs).

Methods

We undertook a registry study combining the National Joint Registry dataset with polyethylene manufacturing characteristics as supplied by the manufacturers. The primary endpoint was revision for any reason. We performed further analyses on other reasons including instability, aseptic loosening, wear, and liner dissociation. The primary analytic approach was Cox proportional hazard regression.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1271 - 1273
1 Oct 2020
Scott CEH Simpson AHRW Pankaj P


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1238 - 1247
1 Oct 2019
Soreide E Denbeigh JM Lewallen EA Thaler R Xu W Berglund L Yao JJ Martinez A Nordsletten L van Wijnen AJ Kakar S

Aims

Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function.

Materials and Methods

A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 516 - 521
1 Apr 2018
Qian L Jiang C Sun P Xu D Wang Y Fu M Zhong S Ouyang J

Aims

The aim of this study was to compare the peak pull-out force (PPF) of pedicle-lengthening screws (PLS) and traditional pedicle screws (TPS) using instant and cyclic fatigue testing.

Materials and Methods

A total of 60 lumbar vertebrae were divided into six groups: PLS submitted to instant pull-out and fatigue-resistance testing (groups A1 and A2, respectively), TPS submitted to instant pull-out and fatigue-resistance testing (groups B1 and B2, respectively) and PLS augmented with 2 ml polymethylmethacrylate, submitted to instant pull-out and fatigue-resistance testing (groups C1 and C2, respectively). The PPF and normalized PPF (PPFn) for bone mineral density (BMD) were compared within and between all groups.


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1416 - 1422
1 Nov 2019
Rohilla R Sharma PK Wadhwani J Rohilla S Beniwal R Singh R Devgan A

Aims

In this randomized study, we aimed to compare quality of regenerate in monolateral versus circular frame fixation in 30 patients with infected nonunion of tibia.

Patients and Methods

Both groups were comparable in demographic and injury characteristics. A phantom (aluminium step wedge of increasing thickness) was designed to compare the density of regenerate on radiographs. A CT scan was performed at three and six months postoperatively to assess regenerate density. A total of 30 patients (29 male, one female; mean age 32.54 years (18 to 60)) with an infected nonunion of a tibial fracture presenting to our tertiary institute between June 2011 and April 2016 were included in the study.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 760 - 767
1 Jul 2019
Galea VP Rojanasopondist P Laursen M Muratoglu OK Malchau H Bragdon C

Aims

Vitamin E-diffused, highly crosslinked polyethylene (VEPE) and porous titanium-coated (PTC) shells were introduced in total hip arthroplasty (THA) to reduce the risk of aseptic loosening. The purpose of this study was: 1) to compare the wear properties of VEPE to moderately crosslinked polyethylene; 2) to assess the stability of PTC shells; and 3) to report their clinical outcomes at seven years.

Patients and Methods

A total of 89 patients were enrolled into a prospective study. All patients received a PTC shell and were randomized to receive a VEPE liner (n = 44) or a moderately crosslinked polyethylene (ModXLPE) liner (n = 45). Radiostereometric analysis (RSA) was used to measure polyethylene wear and component migration. Differences in wear were assessed while adjusting for body mass index, activity level, acetabular inclination, anteversion, and head size. Plain radiographs were assessed for radiolucency and patient-reported outcome measures (PROMs) were administered at each follow-up.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 463 - 472
1 Apr 2015
Panagiotidou A Meswania J Osman K Bolland B Latham J Skinner J Haddad FS Hart A Blunn G

The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper interface of a modular femoral component and to investigate whether different combinations of material also had an effect. The combinations we examined were 1) cobalt–chromium (CoCr) heads on CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic heads on CoCr stems.

In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm.

In test 2 we investigated the effect of increasing the bending moment by offsetting the application of axial load from the midline in the mediolateral plane. Increments of offset equivalent to head + 0 mm, head + 7 mm and head + 14 mm were used.

Significantly higher currents and amplitudes were seen with increasing torque for all combinations of material. However, Ti stems showed the highest corrosion currents. Increased bending moments associated with using larger offset heads produced more corrosion: Ti stems generally performed worse than CoCr stems. Using ceramic heads did not prevent corrosion, but reduced it significantly in all loading configurations.

Cite this article: Bone Joint J 2015;97-B:463–72.


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 468 - 474
1 Apr 2018
Kirzner N Zotov P Goldbloom D Curry H Bedi H

Aims

The aim of this retrospective study was to compare the functional and radiological outcomes of bridge plating, screw fixation, and a combination of both methods for the treatment of Lisfranc fracture dislocations.

Patients and Methods

A total of 108 patients were treated for a Lisfranc fracture dislocation over a period of nine years. Of these, 38 underwent transarticular screw fixation, 45 dorsal bridge plating, and 25 a combination technique. Injuries were assessed preoperatively according to the Myerson classification system. The outcome measures included the American Orthopaedic Foot and Ankle Society (AOFAS) score, the validated Manchester Oxford Foot Questionnaire (MOXFQ) functional tool, and the radiological Wilppula classification of anatomical reduction.


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 114 - 121
1 Jan 2014
Pekmezci M McDonald E Buckley J Kandemir U

We investigated a new intramedullary locking nail that allows the distal interlocking screws to be locked to the nail. We compared fixation using this new implant with fixation using either a conventional nail or a locking plate in a laboratory simulation of an osteoporotic fracture of the distal femur. A total of 15 human cadaver femora were used to simulate an AO 33-A3 fracture pattern. Paired specimens compared fixation using either a locking or non-locking retrograde nail, and using either a locking retrograde nail or a locking plate. The constructs underwent cyclical loading to simulate single-leg stance up to 125 000 cycles. Axial and torsional stiffness and displacement, cycles to failure and modes of failure were recorded for each specimen. When compared with locking plate constructs, locking nail constructs had significantly longer mean fatigue life (75 800 cycles (sd 33 900) vs 12 800 cycles (sd 6100); p = 0.007) and mean axial stiffness (220 N/mm (sd 80) vs 70 N/mm (sd 18); p = 0.005), but lower mean torsional stiffness (2.5 Nm/° (sd 0.9) vs 5.1 Nm/° (sd 1.5); p = 0.008). In addition, in the nail group the mode of failure was either cut-out of the distal screws or breakage of nails, and in the locking plate group breakage of the plate was always the mode of failure. Locking nail constructs had significantly longer mean fatigue life than non-locking nail constructs (78 900 cycles (sd 25 600) vs 52 400 cycles (sd 22 500); p = 0.04).

The new locking retrograde femoral nail showed better stiffness and fatigue life than locking plates, and superior fatigue life to non-locking nails, which may be advantageous in elderly patients.

Cite this article: Bone Joint J 2014;96-B:114–21.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 937 - 941
1 Jul 2011
Bae J Oh J Chon C Oh C Hwang J Yoon Y

We evaluated the biomechanical properties of two different methods of fixation for unstable fractures of the proximal humerus. Biomechanical testing of the two groups, locking plate alone (LP), and locking plate with a fibular strut graft (LPSG), was performed using seven pairs of human cadaveric humeri. Cyclical loads between 10 N and 80 N at 5 Hz were applied for 1 000 000 cycles. Immediately after cycling, an increasing axial load was applied at a rate of displacement of 5 mm/min. The displacement of the construct, maximum failure load, stiffness and mode of failure were compared.

The displacement was significantly less in the LPSG group than in the LP group (p = 0.031). All maximum failure loads and measures of stiffness in the LPSG group were significantly higher than those in the LP group (p = 0.024 and p = 0.035, respectively). In the LP group, varus collapse and plate bending were seen. In the LPSG group, the humeral head cut out and the fibular strut grafts fractured. No broken plates or screws were seen in either group.

We conclude that strut graft augmentation significantly increases both the maximum failure load and the initial stiffness of this construct compared with a locking plate alone.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 896 - 901
1 Jul 2014
Reiner T Jaeger S Schwarze M Klotz MC Beckmann NA Bitsch RG

Aseptic loosening of the femoral component is an important indication for revision surgery in unicompartmental knee replacement (UKR). A new design of femoral component with an additional peg was introduced for the cemented Oxford UKR to increase its stability. The purpose of this study was to compare the primary stability of the two designs of component.

Medial Oxford UKR was performed in 12 pairs of human cadaver knees. In each pair, one knee received the single peg and one received the twin peg design. Three dimensional micromotion and subsidence of the component in relation to the bone was measured under cyclical loading at flexion of 40° and 70° using an optical measuring system. Wilcoxon matched pairs signed-rank test was performed to detect differences between the two groups.

There was no significant difference in the relative micromotion (p = 0.791 and 0.380, respectively) and subsidence (p = 0.301 and 0.176, respectively) of the component between the two groups at both angles of flexion. Both designs of component offered good strength of fixation in this cadaver study.

Cite this article: Bone Joint J 2014;96-B:896–901.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 237 - 244
1 Feb 2011
Berber O Amis AA Day AC

The purpose of this study was to assess the stability of a developmental pelvic reconstruction system which extends the concept of triangular osteosynthesis with fixation anterior to the lumbosacral pivot point. An unstable Tile type-C fracture, associated with a sacral transforaminal fracture, was created in synthetic pelves. The new concept was compared with three other constructs, including bilateral iliosacral screws, a tension band plate and a combined plate with screws. The pubic symphysis was plated in all cases. The pelvic ring was loaded to simulate single-stance posture in a cyclical manner until failure, defined as a displacement of 2 mm or 2°. The screws were the weakest construct, failing with a load of 50 N after 400 cycles, with maximal translation in the craniocaudal axis of 12 mm. A tension band plate resisted greater load but failure occurred at 100 N, with maximal rotational displacement around the mediolateral axis of 2.3°.

The combination of a plate and screws led to an improvement in stability at the 100 N load level, but rotational failure still occurred around the mediolateral axis. The pelvic reconstruction system was the most stable construct, with a maximal displacement of 2.1° of rotation around the mediolateral axis at a load of 500 N.


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 996 - 1002
1 Aug 2017
Brown TS Van Citters DW Berry DJ Abdel MP

Advances in polyethylene (PE) in total hip arthroplasty have led to interest and increased use of highly crosslinked PE (HXLPE) in total knee arthroplasty (TKA). Biomechanical data suggest improved wear characteristics for HXLPE inserts over conventional PE in TKA. Short-term results from registry data and few clinical trials are promising. Our aim is to present a review of the history of HXLPEs, the use of HXLPE inserts in TKA, concerns regarding potential mechanical complications, and a thorough review of the available biomechanical and clinical data.

Cite this article: Bone Joint J 2017;99-B:996–1002.


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 793 - 798
1 Jun 2016
Kohl S Evangelopoulos DS Schär MO Bieri K Müller T Ahmad SS

Aims

The purpose of this study was to report the experience of dynamic intraligamentary stabilisation (DIS) using the Ligamys device for the treatment of acute ruptures of the anterior cruciate ligament (ACL).

Patients and Methods

Between March 2011 and April 2012, 50 patients (34 men and 16 women) with an acute rupture of the ACL underwent primary repair using this device. The mean age of the patients was 30 years (18 to 50). Patients were evaluated for laxity, stability, range of movement (ROM), Tegner, Lysholm, International Knee Documentation Committee (IKDC) and visual analogue scale (VAS) scores over a follow-up period of two years.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 593 - 603
1 May 2005
Harvey A Thomas NP Amis AA


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1386 - 1391
1 Oct 2008
Ozbaydar M Elhassan B Esenyel C Atalar A Bozdag E Sunbuloglu E Kopuz N Demirhan M

We compared time-dependent changes in the biomechanical properties of single-and double-row repair of a simulated acute tear of the rotator cuff in rabbits to determine the effect of the fixation techniques on the healing process.

A tear of the supraspinatus tendon was created in 80 rabbits which were separated into two equal groups. A single-row repair with two suture anchors was conducted in group 1 and a double-row repair with four suture anchors in group 2. A total of ten intact contralateral shoulder joints was used as a control group. Biomechanical testing was performed immediately post-operatively and at four and eight weeks, and histological analysis at four and eight weeks.

The mean load to failure in group 2 animals was greater than in group 1, but both groups remained lower than the control group at all intervals. Histological analysis showed similar healing properties at four and eight weeks in both groups, but a significantly larger number of healed tendon-bone interfaces were identified in group 2 than in group 1 at eight weeks (p < 0.012).

The ultimate load to failure increased with the number of suture anchors used immediately post-operatively, and at four and eight weeks. The increased load to failure at eight weeks seemed to be related to the increase in the surface area of healed tendon-to-bone in the double-row repair group.


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 997 - 1002
1 Jul 2016
Sudo HS Mayer MM Kaneda KK Núñez-Pereira S Shono SY Hitzl WH Iwasaki NI Koller HK

Aims

The aims of our study were to provide long-term information on the behaviour of the thoracolumbar/lumbar (TL/L) curve after thoracic anterior correction and fusion (ASF) and to determine the impact of ASF on pulmonary function.

Patients and Methods

A total of 41 patients (four males, 37 females) with main thoracic (MT) adolescent idiopathic scoliosis (AIS) treated with ASF were included. Mean age at surgery was 15.2 years (11 to 27). Mean follow-up period was 13.5 years (10 to 18).


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 396 - 400
1 Mar 2013
Rhee SH Kim J Lee YH Gong HS Lee HJ Baek GH

The purpose of this study was to evaluate the risk of late displacement after the treatment of distal radial fractures with a locking volar plate, and to investigate the clinical and radiological factors that might correlate with re-displacement. From March 2007 to October 2009, 120 of an original cohort of 132 female patients with unstable fractures of the distal radius were treated with a volar locking plate, and were studied over a follow-up period of six months. In the immediate post-operative and final follow-up radiographs, late displacement was evaluated as judged by ulnar variance, radial inclination, and dorsal angulation. We also analysed the correlation of a variety of clinical and radiological factors with re-displacement. Ulnar variance was significantly overcorrected (p < 0.001) while radial inclination and dorsal angulation were undercorrected when compared statistically (p <  0.001) with the unaffected side in the immediate post-operative stage. During follow-up, radial shortening and dorsal angulation progressed statistically, but none had a value beyond the acceptable range. Bone mineral density measured at the proximal femur and the position of the screws in the subchondral region, correlated with slight progressive radial shortening, which was not clinically relevant.

Volar locking plating of distal radial fractures is a reliable form of treatment without substantial late displacement.

Cite this article: Bone Joint J 2013;95-B:396–400.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 103 - 106
1 Jan 2008
Kettler M Tingart MJ Lunger J Kuhn V

Operative fixation is the treatment of choice for a rupture of the distal tendon of biceps. A variety of techniques have been described including transosseous sutures and suture anchors. The poor quality of the bone of the radial tuberosity might affect the load to failure of the tendon repair in early rehabilitation.

The aim of this study was to determine the loads to failure of different techniques of fixation and to investigate their association with the bone mineral density of the radial tuberosity.

Peripheral quantitative computed tomography was carried out to measure the trabecular and cortical bone mineral density of the radial tuberosity in 40 cadaver specimens. The loads to failure in four different techniques of fixation were determined.

The Endobutton-based method showed the highest failure load at 270 N (sd 22) (p < 0.05). The mean failure load of the transosseous suture technique was 210 N (sd 66) and that of the TwinFix-QuickT 5.0 mm was 57 N (sd 22), significantly lower than those of all other repairs (p < 0.05). No significant correlation was seen between bone mineral density and loads to failure.

The transosseous technique is an easy and cost-saving procedure for fixation of the distal biceps tendon. TwinFix-QuickT 5.0 mm had significantly lower failure loads, which might affect early rehabilitation, particularly in older patients.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 749 - 754
1 Jun 2015
Syed MA Hutt NJ Shah N Edge AJ

This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged <  50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component. This represents an update of previous reports of the same cohort at ten and 16 years, which were reported in 2004 and 2009, respectively. We describe the survival, radiological and functional outcomes at a mean follow-up of 21 years (17 to 25). Of the surviving 34 THAs, one underwent femoral revision for peri-prosthetic fracture after 21 years, and one patient (one hip) was lost to follow-up. Using aseptic loosening as the end-point, 12 hips (31.5%) needed acetabular revision but none needed femoral revision, demonstrating 100% survival (95% confidence interval 89 to 100).

In young patients with high demands, the Furlong HAC–coated femoral component gives excellent long-term results.

Cite this article: Bone Joint J 2015;97-B:749–54.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 686 - 692
1 May 2007
Bolland BJRF New AMR Madabhushi SPG Oreffo ROC Dunlop DG

The complications of impaction bone grafting in revision hip replacement includes fracture of the femur and subsidence of the prosthesis. In this in vitro study we aimed to investigate whether the use of vibration, combined with a perforated tamp during the compaction of morsellised allograft would reduce peak loads and hoop strains in the femur as a surrogate marker of the risk of fracture and whether it would also improve graft compaction and prosthetic stability.

We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 267 - 271
1 Feb 2005
van Haaren EH Smit TH Phipps K Wuisman PIJM Blunn G Heyligers IC

Impacted morsellised allografts have been used successfully to address the problem of poor bone stock in revision surgery. However, there are concerns about the transmission of pathogens, the high cost and the shortage of supply of donor bone. Bone-graft extenders, such as tricalcium phosphate (TCP) and hydroxyapatite (HA), have been developed to minimise the use of donor bone. In a human cadaver model we have evaluated the surgical and mechanical feasibility of a TCP/HA bone-graft extender during impaction grafting revision surgery.

A TCP/HA allograft mix increased the risk of producing a fissure in the femur during the impaction procedure, but provided a higher initial mechanical stability when compared with bone graft alone. The implications of the use of this type of graft extender in impaction grafting revision surgery are discussed.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 339 - 344
1 Mar 2014
Saito T Kumagai K Akamatsu Y Kobayashi H Kusayama Y

Between 2003 and 2007, 99 knees in 77 patients underwent opening wedge high tibial osteotomy. We evaluated the effect of initial stable fixation combined with an artificial bone substitute on the mid- to long-term outcome after medial opening-wedge high tibial osteotomy (HTO) for medial compartmental osteoarthritis or spontaneous osteonecrosis of the knee in 78 knees in 64 patients available for review at a minimum of five years (mean age 68 years; 49 to 82). The mean follow-up was 6.5 years (5 to 10). The mean Knee Society knee score and function score improved from 49.6 (sd 11.4, 26 to 72) and 56.6 (sd 15.6, 5 to 100) before surgery to 88.1 (sd 12.5, 14 to 100) and 89.4 (sd 15.6, 5 to 100) at final follow-up (p <  0.001) respectively. There were no significant differences between patients aged ≥ 70 and < 70 years. The mean standing femorotibial angle was corrected significantly from 181.7° (sd 2.7°, 175° to 185°) pre-operatively to 169.7° (sd 2.4°, 164° to 175°) at one year’s follow-up (p < 0.001) and 169.6° (sd 3.0°, 157° to 179°) at the final follow-up (p = 0.69 vs one year).

Opening-wedge HTO using a stable plate fixation system combined with a bone substitute is a reliable procedure that provides excellent results. Although this treatment might seem challenging for older patients, our results strongly suggest that the results are equally good.

Cite this article: Bone Joint J 2014;96-B:339–44.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 921 - 927
1 Jul 2005
Glyn-Jones S Gill HS Beard DJ McLardy-Smith P Murray DW

Polished, tapered stems are now widely used for cemented total hip replacement and many such designs have been introduced. However, a change in stem geometry may have a profound influence on stability. Stems with a wide, rectangular proximal section may be more stable than those which are narrower proximally. We examined the influence of proximal geometry on stability by comparing the two-year migration of the Exeter stem with a more recent design, the CPS-Plus, which has a wider shoulder and a more rectangular cross-section. The hypothesis was that these design features would increase rotational stability.

Both stems subsided approximately 1 mm relative to the femur during the first two years after implantation. The Exeter stem was found to rotate into valgus (mean 0.2°, sd 0.42°) and internally rotate (mean 1.28°, sd 0.99°). The CPS-Plus showed no significant valgus rotation (mean 0.2°, sd 0.42°) or internal rotation (mean −0.03°, sd 0.75°). A wider, more rectangular cross-section improves rotational stability and may have a better long-term outcome.


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 568 - 573
1 Apr 2013
Pichler K Herbert V Schmidt B Fischerauer EE Leithner A Weinberg A

Matrix metalloproteinases (MMPs), responsible for extracellular matrix remodelling and angiogenesis, might play a major role in the response of the growth plate to detrimental loads that lead to overuse injuries in young athletes. In order to test this hypothesis, human growth plate chondrocytes were subjected to mechanical forces equal to either physiological loads, near detrimental or detrimental loads for two hours. In addition, these cells were exposed to physiological loads for up to 24 hours. Changes in the expression of MMPs -2, -3 and -13 were investigated.

We found that expression of MMPs in cultured human growth plate chondrocytes increases in a linear manner with increased duration and intensity of loading. We also showed for the first time that physiological loads have the same effect on growth plate chondrocytes over a long period of time as detrimental loads applied for a short period.

These findings confirm the involvement of MMPs in overuse injuries in children. We suggest that training programmes for immature athletes should be reconsidered in order to avoid detrimental stresses and over-expression of MMPs in the growth plate, and especially to avoid physiological loads becoming detrimental.

Cite this article: Bone Joint J 2013;95-B:568–73.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 962 - 970
1 Jul 2007
Albert C Patil S Frei H Masri B Duncan C Oxland T Fernlund G

This study explored the relationship between the initial stability of the femoral component and penetration of cement into the graft bed following impaction allografting.

Impaction allografting was carried out in human cadaveric femurs. In one group the cement was pressurised conventionally but in the other it was not pressurised. Migration and micromotion of the implant were measured under simulated walking loads. The specimens were then cross-sectioned and penetration of the cement measured.

Around the distal half of the implant we found approximately 70% and 40% of contact of the cement with the endosteum in the pressure and no-pressure groups, respectively. The distal migration/micromotion, and valgus/varus migration were significantly higher in the no-pressure group than in that subjected to pressure. These motion components correlated negatively with the mean area of cement and its contact with the endosteum.

The presence of cement at the endosteum appears to play an important role in the initial stability of the implant following impaction allografting.


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1152 - 1156
1 Aug 2015
Gupta S Cafferky D Cowie F Riches P Mahendra A

Extracorporeal irradiation of an excised tumour-bearing segment of bone followed by its re-implantation is a technique used in bone sarcoma surgery for limb salvage when the bone is of reasonable quality. There is no agreement among previous studies about the dose of irradiation to be given: up to 300 Gy have been used.

We investigated the influence of extracorporeal irradiation on the elastic and viscoelastic properties of bone. Bone was harvested from mature cattle and subdivided into 13 groups: 12 were exposed to increasing levels of irradiation: one was not and was used as a control. The specimens, once irradiated, underwent mechanical testing in saline at 37°C.

The mechanical properties of each group, including Young’s modulus, storage modulus and loss modulus, were determined experimentally and compared with the control group.

There were insignificant changes in all of these mechanical properties with an increasing level of irradiation.

We conclude that the overall mechanical effect of high levels of extracorporeal irradiation (300 Gy) on bone is negligible. Consequently the dose can be maximised to reduce the risk of local tumour recurrence.

Cite this article: Bone Joint J 2015;97-B:1152–6.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 435 - 438
1 Apr 2011
Gilbody J

Aseptic loosening of the acetabular component continues to be the most common indication for revision of total hip replacements in younger patients. Early in the evolution of the cemented hip, arthroplasty surgeons switched from removal to retention of the acetabular subchondral bone plate, theorising that unfavourable mechanical forces were the cause of loosening at the bone-cement interface.

It is now known that the cause of aseptic loosening is probably biological rather than mechanical and removing the subchondral bone plate may enhance biological fixation of cement to bone. With this in mind, perhaps it is time to revive removal of the subchondral bone as a standard part of acetabular preparation.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 616 - 621
1 May 2011
O’Neill F Condon F McGloughlin T Lenehan B Coffey JC Walsh M

We biomechanically investigated whether the standard dynamic hip screw (DHS) or the DHS blade achieves better fixation in bone with regard to resistance to pushout, pullout and torsional stability. The experiments were undertaken in an artificial bone substrate in the form of polyurethane foam blocks with predefined mechanical properties. Pushout tests were also repeated in cadaveric femoral heads. The results showed that the DHS blade outperformed the DHS with regard to the two most important characteristics of implant fixation, namely resistance to pushout and rotational stability.

We concluded that the DHS blade was the superior implant in this study.


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 76 - 82
1 Jan 2015
Siebachmeyer M Boddu K Bilal A Hester TW Hardwick T Fox TP Edmonds M Kavarthapu V

We report the outcomes of 20 patients (12 men, 8 women, 21 feet) with Charcot neuro-arthropathy who underwent correction of deformities of the ankle and hindfoot using retrograde intramedullary nail arthrodesis. The mean age of the patients was 62.6 years (46 to 83); their mean BMI was 32.7 (15 to 47) and their median American Society of Anaesthetists score was 3 (2 to 4). All presented with severe deformities and 15 had chronic ulceration. All were treated with reconstructive surgery and seven underwent simultaneous midfoot fusion using a bolt, locking plate or a combination of both. At a mean follow-up of 26 months (8 to 54), limb salvage was achieved in all patients and 12 patients (80%) with ulceration achieved healing and all but one patient regained independent mobilisation. There was failure of fixation with a broken nail requiring revision surgery in one patient. Migration of distal locking screws occurred only when standard screws had been used but not with hydroxyapatite-coated screws. The mean American Academy of Orthopaedic Surgeons Foot and Ankle (AAOS-FAO) score improved from 50.7 (17 to 88) to 65.2 (22 to 88), (p = 0.015). The mean Short Form (SF)-36 Health Survey Physical Component Score improved from 25.2 (16.4 to 42.8) to 29.8 (17.7 to 44.2), (p = 0.003) and the mean Euroqol EQ‑5D‑5L score improved from 0.63 (0.51 to 0.78) to 0.67 (0.57 to 0.84), (p = 0.012).

Single-stage correction of deformity using an intramedullary hindfoot arthrodesis nail is a good form of treatment for patients with severe Charcot hindfoot deformity, ulceration and instability provided a multidisciplinary care plan is delivered.

Cite this article: Bone Joint J 2015;97-B:76–82.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 12 | Pages 1561 - 1565
1 Dec 2009
Blakey CM Eswaramoorthy VK Hamilton LC Biant LC Field RE

We report the minimum five-year follow-up of 352 primary total hip replacements using the uncemented hydroxyapatite-coated ANCA-Fit femoral component with a modular neck and head. The series comprised 319 patients (212 men, 107 women) with a mean age at operation of 64.4 years (28 to 97). The principal diagnosis was osteoarthritis. A total of 18 patients (21 hips) died before their follow-up at five years, nine patients (11 hips) were lost to follow-up, and four (four hips) declined further follow-up. Patient-reported outcomes have been recorded for 288 patients (316 hips).

Their mean Oxford Hip Score improved significantly from 41 points (16 to 57) pre-operatively to 20 points (12 to 44) at five-year follow-up. Radiological assessment showed good bony stability in 98% of implants. There were two cases of aseptic loosening of the femoral component. There were no clinical or radiological complications related to modularity. In our series we did not see the high rate of intra-operative fracture previously reported for this implant.

This medium-term follow-up study demonstrates that the clinical outcome of the ANCA-Fit femoral component is, to date, comparable with that of other metaphyseal loading femoral components.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 188 - 193
1 Feb 2011
Rudol G Wilcox R Jin Z Tsiridis E

The mechanical performance of the cement-in-cement interface in revision surgery has not been fully investigated. The quantitative effect posed by interstitial fluids and roughening of the primary mantle remains unclear. We have analysed the strength of the bilaminar cement-bone interface after exposure of the surface of the primary mantle to roughening and fluid interference. The end surfaces of cylindrical blocks of cement were machined smooth (Ra = 200 nm) or rough (Ra = 5 μm) and exposed to either different volumes of water and carboxymethylcellulose (a bone-marrow equivalent) or left dry. Secondary blocks were cast against the modelled surface. Monoblocks of cement were used as a control group. The porosity of the samples was investigated using micro-CT. Samples were exposed to a single shearing force to failure.

The mean failure load of the monoblock control was 5.63 kN (95% confidence interval (CI) 5.17 to 6.08) with an estimated shear strength of 36 MPa. When small volumes of any fluid or large volumes were used, the respective values fell between 4.66 kN and 4.84 kN with no significant difference irrespective of roughening (p > 0.05). Large volumes of carboxymethylcellulose significantly weakened the interface. Roughening in this group significantly increased the strength with failure loads of 2.80 kN (95% CI 2.37 to 3.21) compared with 0.86 kN (95% CI 0.43 to 1.27) in the smooth variant. Roughening of the primary mantle may not therefore be as crucial as has been previously thought in clinically relevant circumstances.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 489 - 495
1 Apr 2010
Ramaswamy R Kosashvili Y Cameron H

The hip joint is commonly involved in multiple epiphyseal dysplasia and patients may require total hip replacement before the age of 30 years.

We retrospectively reviewed nine patients (16 hips) from four families. The diagnosis of multiple epiphyseal dysplasia was based on a family history, genetic counselling, clinical features and radiological findings. The mean age at surgery was 32 years (17 to 63), with a mean follow-up of 15.9 years (5.5 to 24).

Of the 16 hips, ten required revision at a mean of 12.5 years (5 to 15) consisting of complete revision of the acetabular component in three hips and isolated exchange of the liner in seven. No femoral component has loosened or required revision during the period of follow-up.

With revision for any reason, the 15-year survival was only 11.4% (95% confidence interval 1.4 to 21.4). However, when considering revision of the acetabular shell in isolation the survival at ten years was 93.7% (95% confidence interval 87.7 to 99.7), reducing to 76.7% (95% confidence interval 87.7 to 98.7) at 15 and 20 years, respectively.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 259 - 263
1 Feb 2009
Dimmen S Nordsletten L Engebretsen L Steen H Madsen JE

Conventional non-steroidal anti-inflammatory drugs (NSAIDs) and newer specific cyclo-oxygenase-2 (cox-2) inhibitors are commonly used in musculoskeletal trauma and orthopaedic surgery to reduce the inflammatory response and pain. These drugs have been reported to impair bone metabolism. In reconstruction of the anterior cruciate ligament the hamstring tendons are mainly used as the graft of choice, and a prerequisite for good results is healing of the tendons in the bone tunnel. Many of these patients are routinely given NSAIDs or cox-2 inhibitors, although no studies have elucidated the effects of these drugs on tendon healing in the bone tunnel.

In our study 60 female Wistar rats were randomly allocated into three groups of 20. One received parecoxib, one indometacin and one acted as a control. In all the rats the tendo-Achillis was released proximally from the calf muscles. It was then pulled through a drill hole in the distal tibia and sutured anteriorly. The rats were given parecoxib, indometacin or saline intraperitoneally twice daily for seven days. After 14 days the tendon/bone-tunnel interface was subjected to mechanical testing.

Significantly lower maximum pull-out strength (p < 0.001), energy absorption (p < 0.001) and stiffness (p = 0.035) were found in rats given parecoxib and indometacin compared with the control group, most pronounced with parecoxib.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 82 - 87
1 Jan 2009
Charalambous CP Stanley JK Siddique I Aster A Gagey O

The lateral ligament complex is the primary constraint to posterolateral rotatory laxity of the elbow, and if it is disrupted during surgery, posterolateral instability may ensue. The Wrightington approach to the head of the radius involves osteotomising the ulnar insertion of this ligament, rather than incising through it as in the classic posterolateral (Kocher) approach. In this biomechanical study of 17 human cadaver elbows, we demonstrate that the surgical approach to the head can influence posterolateral laxity, with the Wrightington approach producing less posterolateral rotatory laxity than the posterolateral approach.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 870 - 876
1 Jul 2009
Kosashvili Y Backstein D Safir O Lakstein D Gross AE

Pelvic discontinuity with associated bone loss is a complex challenge in acetabular revision surgery. Reconstruction using ilio-ischial cages combined with trabecular metal acetabular components and morsellised bone (the component-cage technique) is a relatively new method of treatment.

We reviewed a consecutive series of 26 cases of acetabular revision reconstructions in 24 patients with pelvic discontinuity who had been treated by the component-cage technique. The mean follow-up was 44.6 months (24 to 68). Failure was defined as migration of a component of > 5 mm.

In 23 hips (88.5%) there was no clinical or radiological evidence of loosening at the last follow-up. The mean Harris hip score improved significantly from 46.6 points (29.5 to 68.5) to 76.6 points (55.5 to 92.0) at two years (p < 0.001). In three hips (11.5%) the construct had migrated at one year after operation. The complications included two dislocations, one infection and one partial palsy of the peroneal nerve.

Our findings indicate that treatment of pelvic discontinuity using the component-cage construct is a reliable option.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1424 - 1430
1 Nov 2009
Corten K Vanrykel F Bellemans J Frederix PR Simon J Broos PLO

The use of plate-and-cable constructs to treat periprosthetic fractures around a well-fixed femoral component in total hip replacements has been reported to have high rates of failure. Our aim was to evaluate the results of a surgical treatment algorithm to use these lateral constructs reliably in Vancouver type-B1 and type-C fractures. The joint was dislocated and the stability of the femoral component was meticulously evaluated in 45 type-B1 fractures. This led to the identification of nine (20%) unstable components. The fracture was considered to be suitable for single plate-and-cable fixation by a direct reduction technique if the integrity of the medial cortex could be restored.

Union was achieved in 29 of 30 fractures (97%) at a mean of 6.4 months (3 to 30) in 29 type-B1 and five type-C fractures. Three patients developed an infection and one construct failed.

Using this algorithm plate-and-cable constructs can be used safely, but indirect reduction with minimal soft-tissue damage could lead to shorter times to union and lower rates of complications.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1528 - 1532
1 Nov 2006
Pun SY Teng MS Kim HT

Desiccation of articular cartilage during surgery is often unavoidable and may result in the death of chondrocytes, with subsequent joint degeneration. This study was undertaken to determine the extent of chondrocyte death caused by exposure to air and to ascertain whether regular rewetting of cartilage could decrease cell death.

Macroscopically normal human cartilage was exposed to air for 0, 30, 60 or 120 minutes. Selected samples were wetted in lactated Ringer’s solution for ten seconds every ten or 20 minutes. The viability of chondrocytes was measured after three days by Live/Dead staining.

Chondrocyte death correlated with the length of exposure to air and the depth of the cartilage. Drying for 120 minutes caused extensive cell death mainly in the superficial 500 μm of cartilage. Rewetting every ten or 20 minutes significantly decreased cell death.

The superficial zone is most susceptible to desiccation. Loss of superficial chondrocytes likely decreases the production of essential lubricating glycoproteins and contributes to subsequent degeneration. Frequent wetting of cartilage during arthrotomy is therefore essential.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 426 - 433
1 Apr 2009
Musahl V Tarkin I Kobbe P Tzioupis C Siska PA Pape H

The operative treatment of displaced fractures of the tibial plateau is challenging. Recent developments in the techniques of internal fixation, including the development of locked plating and minimal invasive techniques have changed the treatment of these fractures. We review current surgical approaches and techniques, improved devices for internal fixation and the clinical outcome after utilisation of new methods for locked plating.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 291 - 295
1 Mar 2007
Langdown AJ Pickard RJ Hobbs CM Clarke HJ Dalton DJN Grover ML

We reviewed the initial post-operative radiographs of the Trident acetabulum and identified a problem with seating of the metal-backed ceramic liner. We identified 117 hips in 113 patients who had undergone primary total hip replacement using the Trident shell with a metal-backed alumina liner. Of these, 19 (16.4%) were noted to have incomplete seating of the liner, as judged by plain anteroposterior and lateral radiographs. One case of complete liner dissociation necessitating early revision was not included in the prevalence figures. One mis-seated liner was revised in the early post-operative period and two that were initially incompletely seated were found on follow-up radiographs to have become correctly seated. There may be technical issues with regard to the implanting of this prosthesis of which surgeons should be aware. However, there is the distinct possibility that the Trident shell deforms upon implantation, thereby preventing complete seating of the liner.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 10 | Pages 1396 - 1401
1 Oct 2007
Hirpara KM Sullivan PJ Raheem O O’Sullivan ME

We compared the bulking and tensile strength of the Pennington modified Kessler, Cruciate and the Savage repairs in an ex vivo model. A total of 60 porcine tendons were randomised to three groups, half repaired using a core suture alone and the remainder employing a core and peripheral technique. The tendons were distracted to failure. The force required to produce a 3 mm gap, the ultimate strength, the mode of failure and bulking for each repair were assessed. We found that there was a significant increase in strength without an increase in bulk as the number of strands increased. The Cruciate repair was significantly more likely to fail by suture pullout than the Pennington modified Kessler or Savage repairs. We advise the use of the Savage repair, especially in the thumb, and a Cruciate when a Savage is not possible. The Pennington modified Kessler repair should be reserved for multiple tendon injuries.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1334 - 1340
1 Oct 2008
Flavin R Halpin T O’Sullivan R FitzPatrick D Ivankovic A Stephens MM

Hallux rigidus was first described in 1887. Many aetiological factors have been postulated, but none has been supported by scientific evidence. We have examined the static and dynamic imbalances in the first metatarsophalangeal joint which we postulated could be the cause of this condition. We performed a finite-element analysis study on a male subject and calculated a mathematical model of the joint when subjected to both normal and abnormal physiological loads.

The results gave statistically significant evidence for an increase in tension of the plantar fascia as the cause of abnormal stress on the articular cartilage rather than mismatch of the articular surfaces or subclinical muscle contractures. Our study indicated a clinical potential cause of hallux rigidus and challenged the many aetiological theories. It could influence the choice of surgical procedure for the treatment of early grades of hallux rigidus.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 172 - 179
1 Feb 2008
Pinczewski LA Salmon LJ Jackson WFM von Bormann RBP Haslam PG Tashiro S

There is little evidence examining the relationship between anatomical landmarks, radiological placement of the tunnels and long-term clinical outcomes following anterior cruciate ligament (ACL) reconstruction. The aim of this study was to investigate the reproducibility of intra-operative landmarks for placement of the tunnels in single-bundle reconstruction of the ACL using four-strand hamstring tendon autografts.

Isolated reconstruction of the ACL was performed in 200 patients, who were followed prospectively for seven years with use of the International Knee Documentation Committee forms and radiographs. Taking 0% as the anterior and 100% as the posterior extent, the femoral tunnel was a mean of 86% (sd 5) along Blumensaat’s line and the tibial tunnel was 48% (sd 5) along the tibial plateau. Taking 0% as the medial and 100% as the lateral extent, the tibial tunnel was 46% (sd 3) across the tibial plateau and the mean inclination of the graft in the coronal plane was 19° (sd 5.5).

The use of intra-operative landmarks resulted in reproducible placement of the tunnels and an excellent clinical outcome seven years after operation. Vertical inclination was associated with increased rotational instability and degenerative radiological changes, while rupture of the graft was associated with posterior placement of the tibial tunnel. If the osseous tunnels are correctly placed, single-bundle reconstruction of the ACL adequately controls both anteroposterior and rotational instability.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 635 - 639
1 May 2005
Ikeuchi M Kawakami T Kitaoka K Okanoue Y Tani T

We describe a new technique of reconstruction of the deficient acetabulum in cementless total hip arthroplasty. The outer iliac table just above the deficient acetabulum is osteotomised and slid downwards. We have termed this an iliac sliding graft. Between October 1997 and November 2001, cementless total hip arthroplasty with an iliac sliding graft was performed on 19 patients (19 hips) with acetabular dysplasia. The mean follow-up was 3.4 years (2 to 6).

The mean pre-operative Harris hip score was 45.1 which improved significantly to 85.3 at the time of the final follow-up. No patient had post-operative abductor dysfunction. Incorporation of the graft was seen after two to three months in all patients. Resorption of the graft and radiolucencies were infrequent. This technique is a useful alternative to femoral head autografting when the patient’s own femoral head cannot be used.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1298 - 1302
1 Sep 2005
Iesaka K Jaffe WL Jones CM Kummer FJ

We have investigated the role of the penetration of saline on the shear strength of the cement-stem interface for stems inserted at room temperature and those preheated to 37°C using a variety of commercial bone cements. Immersion in saline for two weeks at 37°C reduced interfacial strength by 56% to 88% after insertion at room temperature and by 28% to 49% after preheating of the stem. The reduction in porosity as a result of preheating ranged from 71% to 100%. Increased porosity correlated with a reduction in shear strength after immersion in saline (r = 0.839, p < 0.01) indicating that interfacial porosity may act as a fluid conduit.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 295 - 300
1 Mar 2013
Cawley DT Kelly N McGarry JP Shannon FJ

The optimum cementing technique for the tibial component in cemented primary total knee replacement (TKR) remains controversial. The technique of cementing, the volume of cement and the penetration are largely dependent on the operator, and hence large variations can occur. Clinical, experimental and computational studies have been performed, with conflicting results. Early implant migration is an indication of loosening. Aseptic loosening is the most common cause of failure in primary TKR and is the product of several factors. Sufficient penetration of cement has been shown to increase implant stability.

This review discusses the relevant literature regarding all aspects of the cementing of the tibial component at primary TKR.

Cite this article: Bone Joint J 2013;95-B:295–300.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 697 - 707
1 Jun 2008
Fraser-Moodie JA Shortt NL Robinson CM

Injuries to the acromioclavicular joint are common but underdiagnosed. Sprains and minor subluxations are best managed conservatively, but there is debate concerning the treatment of complete dislocations and the more complex combined injuries in which other elements of the shoulder girdle are damaged. Confusion has been caused by existing systems for classification of these injuries, the plethora of available operative techniques and the lack of well-designed clinical trials comparing alternative methods of management. Recent advances in arthroscopic surgery have produced an even greater variety of surgical options for which, as yet, there are no objective data on outcome of high quality. We review the current concepts of the treatment of these injuries.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1409 - 1418
1 Nov 2006
Scheerlinck T Casteleyn P

We undertook a review of the literature relating to the two basic stem designs in use in cemented hip replacement, namely loaded tapers or force-closed femoral stems, and the composite beam or shape-closed designs. The associated stem fixation theory as understood from in vitro studies and finite element modelling were examined with reference to the survivorship results for each of the concepts of fixation.

It is clear that both design principles are capable of producing successful long-term results, providing that their specific requirements of stem metallurgy, shape and surface finish, preparation of the bone and handling of the cement are observed.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 656 - 663
1 May 2005
Toms AD McClelland D Chua L de Waal Malefijt M Verdonschot N Jones RS Kuiper J

Clinical experience of impaction bone grafting for revision knee arthroplasty is limited, with initial stability of the tibial tray emerging as a major concern. The length of the stem and its diameter have been altered to improve stability. Our aim was to investigate the effect of the type of stem, support of the rim and graft impaction on early stability of the tray.

We developed a system for impaction grafting of trays which we used with morsellised bone in artificial tibiae. Trays with short, long thick or long thin stems were implanted, with or without support of the rim. They were cyclically loaded while measuring relative movement.

Long-stemmed trays migrated 4.5 times less than short-stemmed trays, regardless of diameter. Those with support migrated 2.8 times less than those without. The migration of short-stemmed trays correlated inversely with the density of the impacted groups. That of impaction-grafted tibial trays was in the range reported for uncemented primary trays. Movements of short-stemmed trays without cortical support were largest and sensitive to the degree of compaction of the graft. If support of the rim was sufficient or a long stem was used, impacted morsellised bone graft achieved adequate initial stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1410 - 1415
1 Oct 2010
Castagna A Randelli M Garofalo R Maradei L Giardella A Borroni M

Total shoulder replacement is a successful procedure for degenerative or some inflammatory diseases of the shoulder. However, fixation of the glenoid seems to be the main weakness with a high rate of loosening. The results using all-polyethylene components have been better than those using metal-backed components. We describe our experience with 35 consecutive total shoulder replacements using a new metal-backed glenoid component with a mean follow-up of 75.4 months (48 to 154).

Our implant differs from others because of its mechanism of fixation. It has a convex metal-backed bone interface and the main stabilising factor is a large hollow central peg. The patients were evaulated with standard radiographs and with the Constant Score, the Simple Shoulder Test and a visual analogue scale. All the scores improved and there was no loosening, no polyethylene-glenoid disassembly and no other implant-related complications.

We conclude that a metal-backed glenoid component is a good option in total shoulder replacement with no worse results than of those using a cemented all-polyethylene prosthesis.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 571 - 576
1 Apr 2005
Savarino L Granchi D Cenni E Baldini N Greco M Giunti A

There is no diagnostic, non-invasive method for the early detection of loosening after total hip arthroplasty. In a pilot study, we have analysed two serum markers of bone remodelling, procollagen I C-terminal extension peptide (PICP) and cross-linked N-terminal telopeptide (NTx), as well as the diagnostic performance of NTx for the assessment of osteolysis. We recruited 21 patients with loosening (group I), 18 with a well-fixed prosthesis (group II) and 17 at the time of primary arthroplasty for osteoarthritis (OA) (group III). Internal normal reference ranges were obtained from 30 healthy subjects (group IV).

The serum PICP level was found to be significantly lower in patients with OA and those with loosening, when compared with those with stable implants, while the NTx level was significantly increased only in the group with loosening, suggesting that collagen degradation depended on the altered bone turnover induced by the implant. This hypothesis was reinforced by the finding that the values in the pre-surgery patients and stable subjects were comparable with the reference range of younger healthy subjects.

A high specificity and positive predictive value for NTx provided good diagnostic evidence of agreement between the test and the clinical and radiological evaluations. The NTx level could be used to indicate stability of the implant. However, further prospective, larger studies are necessary.