Advertisement for orthosearch.org.uk
Results 1 - 20 of 21
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 740 - 747
1 Jul 2003
Dragoo JL Samimi B Zhu M Hame SL Thomas BJ Lieberman JR Hedrick MH Benhaim P

Multipotential processed lipoaspirate (PLA) cells extracted from five human infrapatellar fat pads and embedded into fibrin glue nodules, were induced into the chondrogenic phenotype using chondrogenic media. The remaining cells were placed in osteogenic media and were transfected with an adenovirus carrying the cDNA for bone morphogenetic protein-2 (BMP-2). We evaluated the tissue-engineered cartilage and bone using in vitro techniques and by placing cells into the hind legs of five severe combined immunodeficient mice. After six weeks, radiological and histological analysis indicated that the PLA cells induced into the chondrogenic phenotype had the histological appearance of hyaline cartilage. Cells transfected with the BMP-2 gene media produced abundant bone, which was beginning to establish a marrow cavity. Tissue-engineered cartilage and bone from infrapatellar fat pads may prove to be useful for the treatment of osteochondral defects


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 127 - 129
1 Jan 2007
Tang TT Lu B Yue B Xie XH Xie YZ Dai KR Lu JX Lou JR

The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats.

Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group.

Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 8 | Pages 1200 - 1208
1 Nov 2004
Borden M Attawia M Khan Y El-Amin SF Laurencin CT

We have evaluated in vivo a novel, polymer-based, matrix for tissue engineering of bone. A segmental defect of 15 mm was created in the ulna of New Zealand white rabbits to determine the regenerative properties of a porous polylactide-co-glycolide matrix alone and in combination with autogenous marrow and/or the osteoinductive protein, BMP-7. In this study four implant groups were used: 1) matrix alone; 2) matrix with autogenous marrow; 3) matrix with 20 μg of BMP-7; and 4) matrix with 20 μg of BMP-7 and autogenous marrow.

The results showed that the degree of bone formation was dependent on the properties of the graft material. The osteoconductive sintered matrix structure showed significant formation of bone at the implant-bone interface. The addition of autogenous marrow increased the penetration of new bone further into the central area of the matrix and also increased the degree of revascularisation. The osteoinductive growth factor BMP-7 induced penetration of new bone throughout the entire structure of the implant. The most effective treatment was with the combination of marrow cells and osteoinductive BMP-7.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1093 - 1099
1 Oct 2024
Ferreira GF Lewis TL Fernandes TD Pedroso JP Arliani GG Ray R Patriarcha VA Filho MV

Aims

A local injection may be used as an early option in the treatment of Morton’s neuroma, and can be performed using various medications. The aim of this study was to compare the effects of injections of hyaluronic acid compared with corticosteroid in the treatment of this condition.

Methods

A total of 91 patients were assessed for this trial, of whom 45 were subsequently included and randomized into two groups. One patient was lost to follow-up, leaving 22 patients (24 feet) in each group. The patients in the hyaluronic acid group were treated with three ultrasound-guided injections (one per week) of hyaluronic acid (Osteonil Plus). Those in the corticosteroid group were treated with three ultrasound-guided injections (also one per week) of triamcinolone (Triancil). The patients were evaluated before treatment and at one, three, six, and 12 months after treatment. The primary outcome measure was the visual analogue scale for pain (VAS). Secondary outcome measures included the American Orthopaedic Foot and Ankle Society (AOFAS) score, and complications.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 7 | Pages 1067 - 1076
1 Sep 2003
Saris DBF Dhert WJA Verbout AJ

The discrepancy between successful experimental studies of cartilage repair and the clinical results is unexplained. We have evaluated the effect of metabolic alterations in joint homeostasis owing to an articular defect on the outcome of cartilage repair using tissue engineering methods. We used 21 adolescent Dutch goats divided into three groups. The control knees were left untreated while the contralateral knee was randomised to receive either no treatment (N), early treatment (E) or late treatment (L). The metabolism of proteoglycans in the surrounding joint surface was determined and correlated with the O’Driscoll score used to quantify the histological aspect of the repair of the defect. Synthesis of proteoglycan (PG) was increased in all groups. The release of glucosaminoglycan (GAG) was significantly higher in the untreated but not after early transplantation (1.3 v 1.8 NS). The cartilage repair scores in the early treatment group were not as good as those of the normal control group, but were significantly better when compared with both the untreated defects and the late treated defects. Defects which had been treated late showed a significantly decreased score when compared with those which had had early treatment or the normal control group and did not differ (p = 0.12) from those with no treatment. The histological and biochemical scores closely resembled the macroscopic and functional parameters which showed a significant deterioration for the late treated group and those without treatment compared with animals treated early. Thus, tissue-engineered cartilage repair is negatively influenced by altered matrix metabolism. Early treatment showed significantly better results for repair of cartilage than late or no treatment, with a concurrent decrease in the detrimental disturbance of cartilage metabolism which constituted a protective effect on the articulation


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 320 - 325
1 Feb 2010
Wang G Yang H Li M Lu S Chen X Cai X

In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study.

The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 427 - 434
1 Apr 2011
Griffin M Iqbal SA Bayat A

Failure of bone repair is a challenging problem in the management of fractures. There is a limited supply of autologous bone grafts for treating nonunions, with associated morbidity after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells (MSCs) hold promise for healing of bone because of their capacity to differentiate into osteoblasts and their availability from a wide variety of sources. Our review aims to evaluate the available clinical evidence and recent progress in strategies which attempt to use autologous and heterologous MSCs in clinical practice, including genetically-modified MSCs and those grown on scaffolds. We have compared various procedures for isolating and expanding a sufficient number of MSCs for use in a clinical setting.

There are now a number of clinical studies which have shown that implantation of MSCs is an effective, safe and durable method for aiding the repair and regeneration of bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 565 - 576
1 May 2009
Getgood A Brooks R Fortier L Rushton N

Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 10 | Pages 1382 - 1386
1 Oct 2007
Bajada S Harrison PE Ashton BA Cassar-Pullicino VN Ashammakhi N Richardson JB

Successful healing of a nine-year tibial nonunion resistant to six previous surgical procedures was achieved by tissue engineering. We used autologous bone marrow stromal cells (BMSCs) expanded to 5 × 106 cells after three weeks’ tissue culture. Calcium sulphate (CaSO4) in pellet form was combined with these cells at operation. The nonunion was clinically and radiologically healed two months after implantation.

This is the description of on healing of a long-standing tibial nonunion by tissue engineering. The successful combination of BMSCs and CaSO4 has not to our knowledge been reported in a clinical setting.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1099 - 1109
1 Aug 2007
Munirah S Samsudin OC Chen HC Salmah SHS Aminuddin BS Ruszymah BHI

Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous ‘chondrocyte-fibrin’ construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis.

All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage.

Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1143 - 1149
1 Aug 2005
Akmal M Singh A Anand A Kesani A Aslam N Goodship A Bentley G

The purpose of this study was to examine the effects of hyaluronic acid supplementation on chondrocyte metabolism in vitro. The clinical benefits of intra-articular hyaluronic acid injections are thought to occur through improved joint lubrication. Recent findings have shown that exogenous hyaluronic acid is incorporated into articular cartilage where it may have a direct biological effect on chondrocytes through CD44 receptors.

Bovine articular chondrocytes were isolated and seeded into alginate constructs. These were cultured in medium containing hyaluronic acid at varying concentrations. Samples were assayed for biochemical and histological changes.

There was a dose-dependent response to the exposure of hyaluronic acid to bovine articular chondrocytes in vitro. Low concentrations of hyaluronic acid (0.1 mg/mL and 1 mg/mL) significantly increase DNA, sulphated glycosaminoglycan and hydroxyproline synthesis. Immunohistology confirmed the maintenance of cell phenotype with increased matrix deposition of chondroitin-6-sulphate and collagen type II. These findings confirm a stimulatory effect of hyaluronic acid on chondrocyte metabolism.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 544 - 553
1 Apr 2006
Akmal M Anand A Anand B Wiseman M Goodship AE Bentley G

Bovine and human articular chondrocytes were seeded in 2% alginate constructs and cultured for up to 19 days in a rotating-wall-vessel (RWV) and under static conditions. Culture within the RWV enhanced DNA levels for bovine chondrocyte-seeded constructs when compared with static conditions but did not produce enhancement for human cells. There was a significant enhancement of glycosaminoglycans and hydroxyproline synthesis for both bovine and human chondrocytes. In all cases, histological analysis revealed enhanced Safranin-O staining in the peripheral regions of the constructs compared with the central region. There was an overall increase in staining intensity after culture within the RWV compared with static conditions. Type-II collagen was produced by both bovine and human chondrocytes in the peripheral and central regions of the constructs and the staining intensity was enhanced by culture within the RWV. A capsule of flattened cells containing type-I collagen developed around the constructs maintained under static conditions when seeded with either bovine or human chondrocytes, but not when cultured within the RWV bioreactor.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 848 - 855
1 Jun 2012
Tayton ER Smith JO Aarvold A Kalra S Dunlop DG Oreffo ROC

When transferring tissue regenerative strategies involving skeletal stem cells to human application, consideration needs to be given to factors that may affect the function of the cells that are transferred. Local anaesthetics are frequently used during surgical procedures, either administered directly into the operative site or infiltrated subcutaneously around the wound. The aim of this study was to investigate the effects of commonly used local anaesthetics on the morphology, function and survival of human adult skeletal stem cells.

Cells from three patients who were undergoing elective hip replacement were harvested and incubated for two hours with 1% lidocaine, 0.5% levobupivacaine or 0.5% bupivacaine hydrochloride solutions. Viability was quantified using WST-1 and DNA assays. Viability and morphology were further characterised using CellTracker Green/Ethidium Homodimer-1 immunocytochemistry and function was assessed by an alkaline phosphatase assay. An additional group was cultured for a further seven days to allow potential recovery of the cells after removal of the local anaesthetic.

A statistically significant and dose dependent reduction in cell viability and number was observed in the cell cultures exposed to all three local anaesthetics at concentrations of 25% and 50%, and this was maintained even following culture for a further seven days.

This study indicates that certain local anaesthetic agents in widespread clinical use are deleterious to skeletal progenitor cells when studied in vitro; this might have relevance in clinical applications.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1172 - 1177
1 Sep 2009
Gikas PD Morris T Carrington R Skinner J Bentley G Briggs T

Autologous chondrocyte implantation is an option in the treatment of full-thickness chondral or osteochondral injuries which are symptomatic. The goal of surgery and rehabilitation is the replacement of damaged cartilage with hyaline or hyaline-like cartilage, producing improved levels of function and preventing early osteoarthritis. The intermediate results have been promising in terms of functional and clinical improvement.

Our aim was to explore the hypothesis that the histological quality of the repair tissue formed after autologous chondrocyte implantation improved with increasing time after implantation.

In all, 248 patients who had undergone autologous chondrocyte implantation had biopsies taken of the repair tissue which then underwent histological grading. Statistical analysis suggested that with doubling of the time after implantation the likelihood of a favourable histological outcome was increased by more than fourfold (p < 0.001).


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 421 - 421
1 Mar 2007


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1537 - 1540
1 Nov 2009
Khan WS Dunne NJ Huntley JS Joyce T Reichert ILH Snelling S Scammell BE

This paper outlines the recent development of an exchange Travelling Fellowship scheme between the British and American Orthopaedic Research Societies.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1110 - 1119
1 Aug 2009
Hepp P Osterhoff G Niederhagen M Marquass B Aigner T Bader A Josten C Schulz R

Perilesional changes of chronic focal osteochondral defects were assessed in the knees of 23 sheep. An osteochondral defect was created in the main load-bearing region of the medial condyle of the knees in a controlled, standardised manner. The perilesional cartilage was evaluated macroscopically and biopsies were taken at the time of production of the defect (T0), during a second operation one month later (T1), and after killing animals at three (T3; n = 8), four (T4; n = 8), and seven (T7; n = 8) months. All the samples were histologically assessed by the International Cartilage Repair Society grading system and Mankin histological scores. Biopsies were taken from human patients (n = 10) with chronic articular cartilage lesions and compared with the ovine specimens. The ovine perilesional cartilage presented with macroscopic and histological signs of degeneration. At T1 the International Cartilage Repair Society ‘Subchondral Bone’ score decreased from a mean of 3.0 (sd 0) to a mean of 1.9 (sd 0.3) and the ‘Matrix’ score from a mean of 3.0 (sd 0) to a mean of 2.5 (sd 0.5). This progressed further at T3, with the International Cartilage Repair Society ‘Surface’ grading, the ‘Matrix’ grading, ‘Cell Distribution’ and ‘Cell Viability’ grading further decreasing and the Mankin score rising from a mean of 1.3 (sd 1.4) to a mean of 5.1 (sd 1.6). Human biopsies achieved Mankin grading of a mean of 4.2 (sd 1.6) and were comparable with the ovine histology at T1 and T3.

The perilesional cartilage in the animal model became chronic at one month and its histological appearance may be considered comparable with that seen in human osteochondral defects after trauma.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 614 - 619
1 May 2006
Scranton PE Frey CC Feder KS

The treatment of osteochondral lesions of the talus has evolved with the development of improved imaging and arthroscopic techniques. However, the outcome of treatment for large cystic type-V lesions is poor, using conventional grafting, debridement or microfracture techniques.

This retrospective study examined the outcomes of 50 patients with a cystic talar defect who were treated with arthroscopically harvested, cored osteochondral graft taken from the ipsilateral knee.

Of the 50 patients, 45 (90%) had a mean good to excellent score of 80.3 (52 to 90) in the Karlsson-Peterson Ankle Score, at a mean follow-up of 36 months (24 to 83). A malleolar osteotomy for exposure was needed in 26 patients and there were no malleolar mal- or nonunions. One patient had symptoms at the donor site three months after surgery; these resolved after arthroscopic release of scar tissue.

This technique is demanding with or without a malleolar osteotomy, but if properly performed has a high likelihood of success.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 128 - 134
1 Jan 2005
Goldberg AJ Lee DA Bader DL Bentley G

An increasing number of patients are treated by autologous chondrocyte implantation (ACI). This study tests the hypothesis that culture within a defined chondrogenic medium containing TGF-β enhances the reexpression of a chondrocytic phenotype and the subsequent production of cartilaginous extracellular matrix by human chondrocytes used in ACI. Chondrocytes surplus to clinical requirements for ACI from 24 patients were pelleted and cultured in either DMEM (Dulbecco’s modified eagles medium)/ITS+Premix/TGF-β1 or DMEM/10%FCS (fetal calf serum) and were subsequently analysed biochemically and morphologically.

Pellets cultured in DMEM/ITS+/TGF-β1 stained positively for type-II collagen, while those maintained in DMEM/10%FCS expressed type-I collagen. The pellets cultured in DMEM/ITS+/TGF-β1 were larger and contained significantly greater amounts of DNA and glycosaminoglycans. This study suggests that the use of a defined medium containing TGF-β is necessary to induce the re-expression of a differentiated chondrocytic phenotype and the subsequent stimulation of glycosaminoglycan and type-II collagen production by human monolayer expanded chondrocytes.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1309 - 1319
1 Oct 2005
Hall S