Advertisement for orthosearch.org.uk
Results 1 - 20 of 55
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 288 - 291
1 Mar 2003
Sampathkumar K Jeyam M Evans CE Andrew JG

Aseptic loosening of orthopaedic implants is usually attributed to the action of wear debris from the prosthesis. Recent studies, however, have also implicated physical pressures in the joint as a further cause of loosening. We have examined the role of both wear debris and pressure on the secretion of two chemokines, MIP-1α and MCP-1, together with M-CSF and PGE2, by human macrophages in vitro. The results show that pressure alone stimulated the secretion of more M-CSF and PGE. 2. when compared with control cultures. Particles alone stimulated the secretion of M-CSF and PGE. 2. , when compared with unstimulated control cultures, but did not stimulate the secretion of the two chemokines. Exposure of macrophages to both stimuli simultaneously had no synergistic effect on the secretion of the chemokines, but both M-CSF and PGE. 2. were increased in a synergistic manner. Our findings suggest that pressure may be an initiating factor for the recruitment of cells into the periprosthetic tissue


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 264 - 270
1 Feb 2009
Hasegawa T Miwa M Sakai Y Niikura T Kurosaka M Komori T

The haematoma occurring at the site of a fracture is known to play an important role in bone healing. We have recently shown the presence of progenitor cells in human fracture haematoma and demonstrated that they have the capacity for multilineage mesenchymal differentiation. There have been many studies which have shown that low-intensity pulsed ultrasound (LIPUS) stimulates the differentiation of a variety of cells, but none has investigated the effects of LIPUS on cells derived from human fracture tissue including human fracture haematoma-derived progenitor cells (HCs). In this in vitro study, we investigated the effects of LIPUS on the osteogenic activity of HCs. Alkaline phosphatase activity, osteocalcin secretion, the expression of osteoblast-related genes and the mineralisation of HCs were shown to be significantly higher when LIPUS had been applied but without a change in the proliferation of the HCs. These findings provide evidence in favour of the use of LIPUS in the treatment of fractures


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 457 - 460
1 Apr 2000
Zambonin G Camerino C Greco G Patella V Moretti B Grano M

We have studied in vitro the effect of a hydroxyapatite (HA) tricalcium phosphate material coated with hepatocyte growth factor (HA-HGF) on cell growth, collagen synthesis and secretion of metalloproteinases (MMPs) by human osteoblasts. Cell proliferation was stimulated when osteoblasts were incubated with untreated HA and was further increased after exposure to HA-HGF. The uptake of [. 3. H]-proline was increased after treatment with HA. When osteoblasts were exposed to HA-HGF, collagen synthesis was increased with respect to HA. The secretion of MMPs in control cells was undetectable, but in HA and HA-HGF cells MMP 2 and MMP 9 were clearly synthesised. Our results suggest that HA can promote osteoblast activity and that HGF can further increase its bioactivity


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 120 - 127
1 Jan 2002
Musgrave DS Pruchnic R Bosch P Ziran BH Whalen J Huard J

We have examined whether primary human muscle-derived cells can be used in ex vivo gene therapy to deliver BMP-2 and to produce bone in vivo. Two in vitro experiments and one in vivo experiment were used to determine the osteocompetence and BMP-2 secretion capacity of cells isolated from human skeletal muscle. We isolated five different populations of primary muscle cells from human skeletal muscle in three patients. In the first in vitro experiment, production of alkaline phosphatase by the cells in response to stimulation by rhBMP-2 was measured and used as an indicator of cellular osteocompetence. In the second, secretion of BMP-2 was measured after the cell populations had been transduced by an adenovirus encoding for BMP-2. In the in vivo experiment, the cells were cotransduced with a retrovirus encoding for a nuclear localised β-galactosidase gene and an adenovirus encoding for BMP-2. The cotransduced cells were then injected into the hind limbs of severe combined immune-deficient (SCID) mice and analysed radiographically and histologically. The nuclear localised β-galactosidase gene allowed identification of the injected cells in histological specimens. In the first in vitro experiment, the five different cell populations all responded to in vitro stimulation of rhBMP-2 by producing higher levels of alkaline phosphatase when compared with non-stimulated cells. In the second, the five different cell populations were all successfully transduced by an adenovirus to express and secrete BMP-2. The cells secreted between 444 and 2551 ng of BMP-2 over three days. In the in vivo experiment, injection of the transduced cells into the hind-limb musculature of SCID mice resulted in the formation of ectopic bone at 1, 2, 3 and 4 weeks after injection. Retroviral labelling of the cell nuclei showed labelled human muscle-derived cells occupying locations of osteoblasts in the ectopic bone, further supporting their osteocompetence. Cells from human skeletal muscle, because of their availability to orthopaedic surgeons, their osteocompetence, and their ability to express BMP-2 after genetic engineering, are an attractive cell population for use in BMP-2 gene therapy approaches


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 135 - 139
1 Feb 2023
Karczewski D Schönnagel L Hipfl C Akgün D Hardt S

Aims

Periprosthetic joint infection (PJI) in total hip arthroplasty in the elderly may occur but has been subject to limited investigation. This study analyzed infection characteristics, surgical outcomes, and perioperative complications of octogenarians undergoing treatment for PJI in a single university-based institution.

Methods

We identified 33 patients who underwent treatment for PJIs of the hip between January 2010 and December 2019 using our institutional joint registry. Mean age was 82 years (80 to 90), with 19 females (57%) and a mean BMI of 26 kg/m2 (17 to 41). Mean American Society of Anesthesiologists (ASA) grade was 3 (1 to 4) and mean Charlson Comorbidity Index was 6 (4 to 10). Leading pathogens included coagulase-negative Staphylococci (45%) and Enterococcus faecalis (9%). Two-stage exchange was performed in 30 joints and permanent resection arthroplasty in three. Kaplan-Meier survivorship analyses were performed. Mean follow-up was five years (3 to 7).


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 723 - 728
1 Jul 2023
Raj RD Fontalis A Grandhi TSP Kim WJ Gabr A Haddad FS

There is a disparity in sport-related injuries between sexes, with females sustaining non-contact musculoskeletal injuries at a higher rate. Anterior cruciate ligament ruptures are between two and eight times more common than in males, and females also have a higher incidence of ankle sprains, patellofemoral pain, and bone stress injuries. The sequelae of such injuries can be devastating to an athlete, resulting in time out of sport, surgery, and the early onset of osteoarthritis. It is important to identify the causes of this disparity and introduce prevention programmes to reduce the incidence of these injuries. A natural difference reflects the effect of reproductive hormones in females, which have receptors in certain musculoskeletal tissues. Relaxin increases ligamentous laxity. Oestrogen decreases the synthesis of collagen and progesterone does the opposite. Insufficient diet and intensive training can lead to menstrual irregularities, which are common in female athletes and result in injury, whereas oral contraception may have a protective effect against certain injuries. It is important for coaches, physiotherapists, nutritionists, doctors, and athletes to be aware of these issues and to implement preventive measures. This annotation explores the relationship between the menstrual cycle and orthopaedic sports injuries in pre-menopausal females, and proposes recommendations to mitigate the risk of sustaining these injuries.

Cite this article: Bone Joint J 2023;105-B(7):723–728.


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 915 - 921
1 Aug 2022
Marya S Tambe AD Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients.

Cite this article: Bone Joint J 2022;104-B(8):915–921.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 399 - 403
1 Apr 2000
Brodner W Krepler P Nicolakis M Langer M Kaider A Lack W Waldhauser F

Scoliosis seen in the chicken after pinealectomy resembles adolescent idiopathic scoliosis in man. It has been suggested that in both species, deficiency of the pineal hormone, melatonin, is responsible for this phenomenon. In nine patients with adolescent idiopathic scoliosis and in ten age- and gender-matched controls, the circadian levels of serum melatonin and the excretion of urinary 6-hydroxy-melatonin-sulphate, the principal metabolite of melatonin, were determined. There were no statistically significant differences in the secretion of serum melatonin or the excretion of urinary 6-hydroxy-melatonin-sulphate between the patients and the control group. The hypothesis of melatonin deficiency as a causative factor in the aetiology of adolescent idiopathic scoliosis cannot be supported by our data


The Journal of Bone & Joint Surgery British Volume
Vol. 30-B, Issue 2 | Pages 298 - 308
1 May 1948
Herschell W Scales JT

The advantages of plastics are well known, but there are still some who maintain that these materials are costly and difficult to manipulate. It is not usually remembered, however, that plastics already have their place in orthopaedic splint manufacture, for example in celluloid appliances of many kinds which are in everyday use. They are much lighter than plaster of Paris; they are unaffected by water and body secretions; and some are radiolucent. With the rapid development of modern plastics now taking place there is a wide field for research into their application in orthopaedic surgery. In describing a range of plastic splints and appliances, and outlining the details of their construction, we have tried to show that such research is worth while


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 2 | Pages 175 - 179
1 Mar 1984
Wahlig H Dingeldein E Buchholz H Buchholz M Bachmann F

A randomised, double-blind study was performed in two groups of 15 patients undergoing total hip replacements, using antibiotic-loaded acrylic cement containing 0.5 g and 1.0 g gentamicin base respectively per 40 g pack of powdered polymer. Postoperatively, the gentamicin levels in the blood, in the urine and in the wound drainage fluid were measured. In both groups of patients, the serum gentamicin concentrations were low whereas the wound drainage fluid contained highly effective antibacterial concentrations. Serum, urine and wound secretion levels showed approximately two-fold higher concentrations in the group of patients receiving the higher gentamicin load


The Journal of Bone & Joint Surgery British Volume
Vol. 44-B, Issue 1 | Pages 165 - 193
1 Feb 1962
Makin M

1. In the experiments undertaken autogenous vesical mucosal transplants were made in guinea-pigs. The transplanted mucosa proliferates and forms a nodule. Central necrosis of the nodule and the secretion of the proliferating epithelium combine to form a cyst filled with a viscous fluid. 2. Before the cyst is well defined some of this fluid diffuses into the sub-epithelial connective tissue, producing areas of tissue oedema which later are transformed into translucent hyaloid islands. With further condensation of the collagen fibres, these areas are converted into primitive bone. The hyaloid islands act as a bone precursor. Bone always formed in the wall of the cyst within thirty days except in cases of sepsis or death of the transplant, when there was no osteogenesis. Homografts of vesical mucosa were found unreliable in their capacity to induce bone. 3. The results of the histochemical investigation and radiographic diffraction of the hyaloid areas suggest that the proliferating mucosa is the source of the inducing agent. 4. Bone can be induced only in sites where a primitive vascular connective tissue is growing and where there exists an adequate blood supply. 5. The rapid rate of osteogenesis can be seen in the radiographs of induced bone in radial defects. The electron-microscopic study of the induced bone at three weeks confirmed that osteoid had been formed so quickly that calcification had not yet taken place. 6. The relationship between the bone induced by transplanting vesical epithelium and the formation of urinary calculi is discussed and their common origin postulated


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 768 - 773
1 Jul 2000
Bunker TD Reilly J Baird KS Hamblen DL

Frozen shoulder is a chronic fibrosing condition of the capsule of the joint. The predominant cells involved are fibroblasts and myofibroblasts which lay down a dense matrix of type-I and type-III collagen within the capsule. This subsequently contracts leading to the typical features of pain and stiffness. Cytokines and growth factors regulate the growth and function of the fibroblasts of connective tissue and remodelling of the matrix is controlled by the matrix metalloproteinases (MMPs) and their inhibitors. Our aim was to determine whether there was an abnormal expression or secretion of cytokines, growth factors and MMPs in tissue samples from 14 patients with frozen shoulder using the reverse transcription/polymerase chain reaction (RT/PCR) technique and to compare the findings with those in tissue from four normal control shoulders and from five patients with Dupuytren’s contracture. Tissue from frozen shoulders demonstrated the presence of mRNA for a large number of cytokines and growth factors although the frequency was only slightly higher than in the control tissue. The frequency for a positive signal for the proinflammatory cytokines Il-1β and TNF-α and TNF-β, was not as great as in the Dupuytren’s tissue. The presence of mRNA for fibrogenic growth factors was, however, more similar to that obtained in the control and Dupuytren’s tissue. This correlated with the histological findings which in most specimens showed a dense fibrous tissue response with few cells other than mature fibroblasts and with very little evidence of any active inflammatory cell process. Positive expressions of the mRNA for the MMPs were also increased, together with their natural inhibitor TIMP. The notable exception compared with control and Dupuytren’s tissue was the absence of MMP-14, which is known to be a membrane-type MMP required for the activation of MMP-2 (gelatinase A). Understanding the control mechanisms which play a part in the pathogenesis of frozen shoulder may lead to the development of new regimes of treatment for this common, protracted and painful chronic fibrosing condition


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1136 - 1145
14 Sep 2020
Kayani B Onochie E Patil V Begum F Cuthbert R Ferguson D Bhamra JS Sharma A Bates P Haddad FS

Aims

During the COVID-19 pandemic, many patients continue to require urgent surgery for hip fractures. However, the impact of COVID-19 on perioperative outcomes in these high-risk patients remains unknown. The objectives of this study were to establish the effects of COVID-19 on perioperative morbidity and mortality, and determine any risk factors for increased mortality in patients with COVID-19 undergoing hip fracture surgery.

Methods

This multicentre cohort study included 340 COVID-19-negative patients versus 82 COVID-19-positive patients undergoing surgical treatment for hip fractures across nine NHS hospitals in Greater London, UK. Patients in both treatment groups were comparable for age, sex, body mass index, fracture configuration, and type of surgery performed. Predefined perioperative outcomes were recorded within a 30-day postoperative period. Univariate and multivariate analysis were used to identify risk factors associated with increased risk of mortality.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 234 - 244
1 Feb 2021
Gibb BP Hadjiargyrou M

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics.

Cite this article: Bone Joint J 2021;103-B(2):234–244.


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 807 - 810
1 Jul 2020
Oussedik S Zagra L Shin GY D’Apolito R Haddad FS

The transition from shutdown of elective orthopaedic services to the resumption of pre-COVID-19 activity presents many challenges. These include concerns about patient safety, staff safety, and the viability of health economies. Careful planning is necessary to allow patients to benefit from orthopaedic care in a safe and sustainable manner.

Cite this article: Bone Joint J 2020;102-B(7):807–810.


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 627 - 631
1 May 2020
Mahon J Ahern DP Evans SR McDonnell J Butler JS

Aims

The timing of surgical fixation in spinal fractures is a contentious topic. Existing literature suggests that early stabilization leads to reduced morbidity, improved neurological outcomes, and shorter hospital stay. However, the quality of evidence is low and equivocal with regard to the safety of early fixation in the severely injured patient. This paper compares complication profiles between spinal fractures treated with early fixation and those treated with late fixation.

Methods

All patients transferred to a national tertiary spinal referral centre for primary surgical fixation of unstable spinal injuries without preoperative neurological deficit between 1 July 2016 and 20 October 2017 were eligible for inclusion. Data were collected retrospectively. Patients were divided into early and late cohorts based on timing from initial trauma to first spinal operation. Early fixation was defined as within 72 hours, and late fixation beyond 72 hours.


The Journal of Bone & Joint Surgery British Volume
Vol. 34-B, Issue 4 | Pages 646 - 698
1 Nov 1952
Duraiswami PK

1 . The magnitude of the problem of congenital anomalies becomes evident when one takes into consideration the fact that they cause the death of approximately one quarter of the human race either before or shortly after birth, and handicap an appreciable proportion of the survivors throughout their lives. Further, a significant percentage of infants judged to be normal at birth are found in later life to suffer from "disguised" anomalies of the skeleton and soft tissues. Though the study of genetic factors leading to congenital defects has attracted a great deal of attention during the last few decades, the importance of environmental causes of human malformations has received relatively less emphasis. The association of congenital anomalies such as cataract and cardiac septal defects with maternal intercurrent infection of rubella during the early months of pregnancy demonstrates clearly that changes in the germplasm cannot always be invoked as the cause of developmental abnormalities. Congenital malformations that are sometimes genetically determined, such as microphthalmos, cleft palate, and certain skeletal abnormalities, can be caused in the offspring not only by maternal nutritional deficiencies and x-radiation but also, at least in some animals, such as chickens, rats and rabbits, by the introduction of certain substances like insulin into the environment of the embryo during its development. 2. Since very little is known of the detailed histology of the early human embryo, the histological examination of cases of perverted growth is mainly limited to aborted foetuses which, unfortunately, tend to present varying degrees of post-mortem degeneration before accurate histological methods can be applied. It is exactly in this field that animal experiments can offer valuable help. According to Mall and other embryologists the pathological changes that take place in human foetuses and those obtained experimentally in animals are not merely "analogous or similar but identical.". 3. An attempt has been made to review, in some detail, the more important work which has been carried out on experimental teratogenesis, on the epidemiological implications of developmental arrests in humans, and on foetal abnormalities associated with maternal metabolic and hormonal disorders during pregnancy. 4. The technique employed for injection of insulin into the egg yolk has been described. Methods used for the estimation of blood sugar in chick embryos at various stages after injection of insulin and special histochemical techniques for localising polysaccharides in cartilage have been outlined. 5. A few salient experimental results have been tabulated, and some of the insulin-induced abnormalities have been illustrated. 6. The possible mechanism of action of insulin in the causation of the various developmental anomalies has been discussed. Broadly speaking, insulin seems to affect primarily the part or tissue which is in the most active stage of growth or differentiation at the time of the injection. Within the range of 0·05 to 6 units of insulin employed, the incidence, severity and distribution of the deformities appear to increase with the dose of the hormone. It has been observed that the hypoglycaemia caused by insulin injection is not counteracted till about the twelfth day of incubation, presumably because of excessive accumulation of glycogen in the yolk-sac membrane immediately after the injection, and because of lack of glycogen storage in the embryonic liver and the absence of active secretion in the endocrine glands concerned with the carbohydrate metabolism of the embryo. It has been suggested that this unchecked hypoglycaemia may deprive the mesenchyme, pre-cartilage and cartilage of glycogen and mucopolysaccharides (chondroiten-sulphuric acid complexes), depending on the time of injection and the dose of insulin, and thus not only give rise to a variety of single and multiple deformities in the cartilaginous skeleton but also interfere with the normal endochondral ossification, resulting in a generalised developmental disturbance of bone resembling osteogenesis imperfecta in the human. 7. Insulin-induced abnormalities can be prevented to a remarkable extent by injecting nicotinamide and riboflavin into eggs along with insulin. 8. The question of the practical application of the knowledge gained from experimental observations on insulin-induced developmental abnormalities in explaining the possible causation of congenital anomalies in humans by genetic and environmental teratogenic factors, has been discussed. It is suggested that the orderly progression from the mesenchymatous condensation to cartilage, and then through calcified cartilage to bone, may be disturbed by these teratogenic factors at critical phases during the development of the embryo, and a variety of single and multiple skeletal deformities may thus be induced. 9. A plea is made for routine pathological and radiological examination of aborted foetuses and stillborn infants more or less on the lines followed for experimentally induced deformities with a view to applying the knowledge gained from animal experiments to a better understanding of the etiology and pathology of human congenital anomalies. 10. As regards the possible prevention of these deformities, it is not always easy to offer sound eugenic advice in the cases of congenital malformations determined partly or completely by genetic factors, for two important reasons. First, it is often difficult to distinguish between genetically determined congenital anomalies and their phenocopies. Secondly, genetically determined developmental defects sometimes show surprisingly variable expressivity and penetrance. For the conditions in which both genetic and environmental factors are involved, the most profitable immediate line of attack would be on the environmental factors. A relatively simpler problem is presented by the malformations which are, for all practical purposes, entirely caused by environmental factors. Measures to prevent congenital anomalies caused by prenatal rubella, such as exposure of girls to the disease during childhood and protection of pregnant women during the early stages of pregnancy by immune serum, are under active consideration. 11 . Further energetic investigation of the causes of permaturity, stillbirths, monstrosities and congenital malformations is urgently needed, before embarking on a successful programme for prevention. "The day of successful prophylaxis is not yet, but it is much nearer than seemed possible a few years ago."


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1025 - 1032
1 Aug 2018
Wang D Wang H Luo Z Meng W Pei F Li Q Zhou Z Zeng W

Aims

The aim of this study was to identify the most effective regimen of multiple doses of oral tranexamic acid (TXA) in achieving maximum reduction of blood loss in total knee arthroplasty (TKA).

Patients and Methods

In this randomized controlled trial, 200 patients were randomized to receive a single dose of 2.0 g of TXA orally two hours preoperatively (group A), a single dose of TXA followed by 1.0 g orally three hours postoperatively (group B), a single dose of TXA followed by 1.0 g three and nine hours postoperatively (group C), or a single dose of TXA followed by 1.0 g orally three, nine, and 15 hours postoperatively (group D). All patients followed a routine enhanced-recovery protocol. The primary outcome measure was the total blood loss. Secondary outcome measures were hidden blood loss (HBL), reduction in the level of haemoglobin, the rate of transfusion and adverse events.


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1172 - 1177
1 Sep 2014
Lawrence H Deehan D Holland J Kirby J Tyson-Capper A

Abnormal wear of cobalt-containing metal-on-metal joints is associated with inflammatory pseudotumours. Cobalt ions activate human toll-like receptor 4 (TLR4), which normally responds to bacterial lipopolysaccharide (LPS) in sepsis. Activation of TLR4 by LPS increases the expression of chemokines IL-8 and CXCL10, which recruit leukocytes and activated T-cells, respectively. This study was designed to determine whether cobalt induces a similar inflammatory response to LPS by promoting the expression of IL-8 and CXCL10. A human monocytic cell line, derived from acute monocytic leukaemia, was treated with cobalt ions and expression of IL-8 and CXCL10 measured at mRNA and protein levels. Cobalt-treated macrophages showed a 60-fold increase in IL-8 mRNA, and an eightfold increase in production of the mature chemokine (both p < 0.001); expression of the CXCL10 gene and protein was also significantly increased by cobalt (both p < 0.001). Experiments were also performed in the presence of CLI-095, a TLR4-specific antagonist which abrogated the cobalt-mediated increase in IL-8 and CXCL10 expression.

These findings suggest that cobalt ions induce inflammation similar to that observed during sepsis by the simultaneous activation of two TLR4-mediated signalling pathways. These pathways result in increased production of IL-8 and CXCL10, and may be implicated in pseudotumour formation following metal-on-metal replacement.

Cite this article: Bone Joint J 2014; 96-B:1172–7.


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 404 - 412
1 Mar 2018
Parker JD Lim KS Kieser DC Woodfield TBF Hooper GJ

Aims

The intra-articular administration of tranexamic acid (TXA) has been shown to be effective in reducing blood loss in unicompartmental knee arthroplasty and anterior cruciate reconstruction. The effects on human articular cartilage, however, remains unknown. Our aim, in this study, was to investigate any detrimental effect of TXA on chondrocytes, and to establish if there was a safe dose for its use in clinical practice. The hypothesis was that TXA would cause a dose-dependent damage to human articular cartilage.

Materials and Methods

The cellular morphology, adhesion, metabolic activity, and viability of human chondrocytes when increasing the concentration (0 mg/ml to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were analyzed in a 2D model. This was then repeated, excluding cellular adhesion, in a 3D model and confirmed in viable samples of articular cartilage.