Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 4 | Pages 607 - 612
1 May 2004
Asano N Yamakazi T Seto M Matsumine A Yoshikawa H Uchida A

We investigated the rates of expression of bone morphogenetic protein-2 (BMP-2) in 29 adult patients with high-grade malignant fibrous histiocytoma of soft tissue, using the BMP-2-specific monoclonal antibody, AbH3b2/17, and found that they ranged from 1.9% to 78.9%. The survival at five years of the groups expressing high (≥30%) and low (< 30%) levels of BMP-2 was 85.7% and 36.3%, respectively. Multivariable analysis showed that only BMP-2 had prognostic significance for continuous disease-free survival and for overall survival (p < 0.05). Our findings indicate that over-expression of BMP-2 in malignant fibrous histiocytoma of soft tissue is the most reliable prognostic indicator of the parameters assessed


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 740 - 747
1 Jul 2003
Dragoo JL Samimi B Zhu M Hame SL Thomas BJ Lieberman JR Hedrick MH Benhaim P

Multipotential processed lipoaspirate (PLA) cells extracted from five human infrapatellar fat pads and embedded into fibrin glue nodules, were induced into the chondrogenic phenotype using chondrogenic media. The remaining cells were placed in osteogenic media and were transfected with an adenovirus carrying the cDNA for bone morphogenetic protein-2 (BMP-2). We evaluated the tissue-engineered cartilage and bone using in vitro techniques and by placing cells into the hind legs of five severe combined immunodeficient mice. After six weeks, radiological and histological analysis indicated that the PLA cells induced into the chondrogenic phenotype had the histological appearance of hyaline cartilage. Cells transfected with the BMP-2 gene media produced abundant bone, which was beginning to establish a marrow cavity. Tissue-engineered cartilage and bone from infrapatellar fat pads may prove to be useful for the treatment of osteochondral defects


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims

The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses.

Methods

Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 127 - 129
1 Jan 2007
Tang TT Lu B Yue B Xie XH Xie YZ Dai KR Lu JX Lou JR

The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats.

Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group.

Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 205 - 209
1 Feb 2012
Kadonishi Y Deie M Takata T Ochi M

We examined whether enamel matrix derivative (EMD) could improve healing of the tendon–bone interface following reconstruction of the anterior cruciate ligament (ACL) using a hamstring tendon in a rat model. ACL reconstruction was performed in both knees of 30 Sprague-Dawley rats using the flexor digitorum tendon. The effect of commercially available EMD (EMDOGAIN), a preparation of matrix proteins from developing porcine teeth, was evaluated. In the left knee joint the space around the tendon–bone interface was filled with 40 µl of EMD mixed with propylene glycol alginate (PGA). In the right knee joint PGA alone was used. The ligament reconstructions were evaluated histologically and biomechanically at four, eight and 12 weeks (n = 5 at each time point). At eight weeks, EMD had induced a significant increase in collagen fibres connecting to bone at the tendon–bone interface (p = 0.047), whereas the control group had few fibres and the tendon–bone interface was composed of cellular and vascular fibrous tissues. At both eight and 12 weeks, the mean load to failure in the treated specimens was higher than in the controls (p = 0.009). EMD improved histological tendon–bone healing at eight weeks and biomechanical healing at both eight and 12 weeks. EMD might therefore have a human application to enhance tendon–bone repair in ACL reconstruction.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 889 - 895
1 Jul 2005
Deehan DJ Cawston TE