This article presents a unified clinical theory
that links established facts about the physiology of
Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs. In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m2 (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research.Aims
Methods
The continual cycle of bone formation and resorption
is carried out by osteoblasts, osteocytes, and osteoclasts under
the direction of the bone-signaling pathway. In certain situations
the host cycle of bone repair is insufficient and requires the assistance
of bone grafts and their substitutes. The fundamental properties
of a bone graft are osteoconduction, osteoinduction, osteogenesis,
and structural support. Options for bone grafting include autogenous
and allograft bone and the various isolated or combined substitutes
of calcium sulphate, calcium phosphate, tricalcium phosphate, and
coralline hydroxyapatite. Not all bone grafts will have the same
properties. As a result, understanding the requirements of the clinical
situation and specific properties of the various types of bone grafts
is necessary to identify the ideal graft. We present a review of
the bone repair process and properties of bone grafts and their
substitutes to help guide the clinician in the decision making process. Cite this article:
In patients with traumatic brain injury and fractures
of long bones, it is often clinically observed that the rate of bone
healing and extent of callus formation are increased. However, the
evidence has been unconvincing and an association between such an
injury and enhanced fracture healing remains unclear. We performed
a retrospective cohort study of 74 young adult patients with a mean
age of 24.2 years (16 to 40) who sustained a femoral shaft fracture
(AO/OTA type 32A or 32B) with or without a brain injury. All the
fractures were treated with closed intramedullary nailing. The main
outcome measures included the time required for bridging callus
formation (BCF) and the mean callus thickness (MCT) at the final
follow-up. Comparative analyses were made between the 20 patients
with a brain injury and the 54 without brain injury. Subgroup comparisons
were performed among the patients with a brain injury in terms of
the severity of head injury, the types of intracranial haemorrhage
and gender. Patients with a brain injury had an earlier appearance
of BCF
(p <
0.001) and a greater final MCT value (p <
0.001) than
those without. There were no significant differences with respect
to the time required for BCF and final MCT values in terms of the
severity of head injury (p = 0.521 and p = 0.153, respectively),
the types of intracranial haemorrhage (p = 0.308 and p = 0.189,
respectively) and gender (p = 0.383 and
p = 0.662, respectively). These results confirm that an injury to the brain may be associated
with accelerated fracture healing and enhanced callus formation.
However, the severity of the injury to the brain, the type of intracranial
haemorrhage and gender were not statistically significant factors
in predicting the rate of bone healing and extent of final callus formation.
The literature on fracture repair has been reviewed. The traditional concepts of delayed and nonunion have been examined in terms of the phased and balanced anabolic and catabolic responses in bone repair. The role of medical manipulation of these inter-related responses in the fracture healing have been considered.