Advertisement for orthosearch.org.uk
Results 1 - 20 of 195
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 4 | Pages 598 - 606
1 May 2004
Daley B Doherty AT Fairman B Case CP

Wear debris was extracted from 21 worn hip and knee replacements. Its mutagenic effects were tested on human cells in tissue culture using the micronucleus assay and fluorescent in situ hybridisation. The extracted wear debris increased the level of micronuclei in a linear dose-dependent manner but with a tenfold difference between samples. The concentration of titanium +/− vanadium and aluminium within the wear debris was linearly related both to the level of centromere-positive micronuclei in tissue culture, indicating an aneuploid event, and to the level of aneuploidy in vivo in peripheral blood lymphocytes. The concentration of cobalt and chromium +/− nickel and molybdenum in the wear debris correlated with the total index of micronuclei in tissue culture, both centromere-positive and centromere-negative i.e. both chromosomal breakage and aneuploidy events. The results show that wear debris can damage chromosomes in a dose-dependent manner which is specific to the type of metal. The results from studies in vitro correlate with those in vivo and suggest that the wear debris from a worn implant is at least partly responsible for the chromosomal damage which is seen in vivo


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 6 | Pages 831 - 839
1 Nov 1992
Langkamer V Case C Heap P Taylor A Collins C Pearse M Solomon L

The production of particulate wear debris is a recognised complication of joint arthroplasty, but interest has concentrated on local tissue reactions and a possible association with implant loosening. The fate of wear products in the body remains unknown, although some of the metals used in the construction of orthopaedic implants are known to have toxic and oncogenic properties. We report histological and electron-microscopic evidence from two cases which shows that metallic debris can be identified in the lymphoreticular tissues of the body distant from the hip some years after joint replacement. The increase in the use of total arthroplasty in younger patients, the development of new alloys and the use of porous coatings must raise concern for the long-term effects of the accumulation of wear debris in the body


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 8 | Pages 1178 - 1180
1 Nov 2003
Crawford JR Van Rensburg L Marx C

Pain in the distribution of the sciatic nerve is common in the elderly. In the presence of a long-standing joint replacement, consideration should be given as to whether compression might be due to an extraspinal cause. We present three women, in whom a mass of wear debris from a previous total hip replacement caused compression of the sciatic nerve posterior to the hip. The symptoms were relieved immediately following operation


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 6 | Pages 990 - 993
1 Nov 1998
Crawford R Sabokbar A Wulke A Murray DW Athanasou NA

We present a case in which the growth of an intraosseous cyst arising from the proximal tibiofibular joint appeared to have been increased by polyethylene wear particles from a medial unicompartmental knee replacement. Histological examination of the cyst wall showed a histiocytic response associated with numerous polyethylene wear particles. This case demonstrates that there is a direct communication between the joint cavity and the cyst. Such communication is probably through openings in the articular cartilage large enough to allow the passage of these particles.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 6 | Pages 901 - 909
1 Aug 2000
Böhler M Mochida Y Bauer TW Plenk H Salzer M

We compared wear particles from two different designs of total hip arthroplasty with polycrystalline alumina-ceramic bearings of different production periods (group 1, before ISO 6474: group 2, according to ISO 6474). The neocapsules and interfacial connective tissue membranes were retrieved after mean implantation times of 131 months and 38 months, respectively. Specimen blocks were freed from embedding media, either methylmethacrylate or paraffin and digested in concentrated nitric acid. Particles were then counted and their sizes and composition determined by SEM and energy-dispersive x-ray analysis (EDXA).

The mean numbers and sizes of most alumina wear particles did not differ for both production periods, but the larger sizes of particle in group 1 point to more severe surface destruction. The increased metal wear in group 2 was apparently due to alumina-induced abrasion of the stems. In this study the concentrations of particles in the periprosthetic tissues were 2 to 22 times lower than those observed previously with polyethylene and alumina/polyethylene wear couples.


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 1 | Pages 60 - 67
1 Jan 1994
Shanbhag A Jacobs J Glant T Gilbert J Black J Galante J

Interfacial membranes collected at revision from 11 failed uncemented Ti-alloy total hip replacements were examined. Particles in the membranes were characterised by electron microscopy, microchemical spectroscopy and particle size analysis. Most were polyethylene and had a mean size of 0.53 micron +/- 0.3. They were similar to the particles seen in the base resin used in the manufacture of the acetabular implants. Relatively few titanium particles were seen. Fragments of bone, stainless steel and silicate were found in small amounts. Most of the polyethylene particles were too small to be seen by light microscopy. Electron microscopy and spectroscopic techniques are required to provide an accurate description of this debris.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 340 - 344
1 Mar 1998
Besong AA Tipper JL Ingham E Stone MH Wroblewski BM Fisher J

Ultra-high-molecular-weight polyethylene (UHMWPE) components for total joint replacement generate wear particles which cause adverse biological tissue reactions leading to osteolysis and loosening. Sterilisation of UHMWPE components by gamma irradiation in air causes chain scissions which initiate a long-term oxidative process that degrades the chemical and mechanical properties of the polyethylene. Using a tri-pin-on-disc tribometer we studied the effect of ageing for ten years after gamma irradiation in air on the volumetric wear, particle size distribution and the number of particles produced by UHMWPE when sliding against a stainless-steel counterface.

The aged and irradiated material produced six times more volumetric wear and 34 times more wear particles per unit load per unit sliding distance than non-sterilised UHMWPE. Our findings indicate that oxidative degradation of polyethylene after gamma irradiation in air with ageing produces more wear.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 882 - 890
1 Jul 2018
Bertrand J Delfosse D Mai V Awiszus F Harnisch K Lohmann CH

Aims

Early evidence has emerged suggesting that ceramic-on-ceramic articulations induce a different tissue reaction to ceramic-on-polyethylene and metal-on-metal bearings. Therefore, the aim of this study was to investigate the tissue reaction and cellular response to ceramic total hip arthroplasty (THA) materials in vitro, as well as the tissue reaction in capsular tissue after revision surgery of ceramic-on-ceramic THAs.

Patients and Methods

We investigated tissue collected at revision surgery from nine ceramic-on-ceramic articulations. we compared our findings with tissue obtained from five metal-on-metal THA revisions, four ceramic-on-polyethylene THAs, and four primary osteoarthritis synovial membranes. The latter were analyzed to assess the amount of tissue fibrosis that might have been present at the time of implantation to enable evaluation, in relation to implantation time, of any subsequent response in the tissues.


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1168 - 1172
1 Jun 2021
Iliadis AD Wright J Stoddart MT Goodier WD Calder P

Aims. The STRYDE nail is an evolution of the PRECICE Intramedullary Limb Lengthening System, with unique features regarding its composition. It is designed for load bearing throughout treatment in order to improve patient experience and outcomes and allow for simultaneous bilateral lower limb lengthening. The literature published to date is limited regarding outcomes and potential problems. We report on our early experience and raise awareness for the potential of adverse effects from this device. Methods. This is a retrospective review of prospective data collected on all patients treated in our institution using this implant. We report the demographics, nail accuracy, reliability, consolidation index, and cases where concerning clinical and radiological findings were encountered. There were 14 STRYDE nails implanted in nine patients (three male and six female) between June 2019 and September 2020. Mean age at surgery was 33 years (14 to 65). Five patients underwent bilateral lengthening (two femoral and three tibial) and four patients unilateral femoral lengthening for multiple aetiologies. Results. At the time of reporting, eight patients (13 implants) had completed lengthening. Osteolysis and periosteal reaction at the junction of the telescopic nail was evident in nine implants. Five patients experienced localized pain and swelling. Macroscopic appearances following retrieval were consistent with corrosion at the telescopic junction. Tissue histology was consistent with effects of focal metallic wear debris. Conclusion. From our early experience with this implant we have found the process of lengthening to be accurate and reliable with good regenerate formation and consolidation. Proposed advantages of early load bearing and the ability for bilateral lengthening are promising. We have, however, encountered concerning clinical and radiological findings in several patients. We have elected to discontinue its use to allow further investigation into the retrieved implants and patient outcomes from users internationally. Cite this article: Bone Joint J 2021;103-B(6):1168–1172


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1655 - 1659
1 Dec 2007
Anwar HA Aldam CH Visuvanathan S Hart AJ

The biological significance of cobalt-chromium wear particles from metal-on-metal hip replacements may be different to the effects of the constituent metal ions in solution. Bacteria may be able to discriminate between particulate and ionic forms of these metals because of a transmembrane nickel/cobalt-permease. It is not known whether wear particles are bacteriocidal. We compared the doubling time of coagulase negative staphylococcus, Staphylococcus aureus and methicillin resistant S. aureus when cultured in either wear particles from a metal-on-metal hip simulator, wear particles from a metal-on-polyethylene hip simulator, metal ions in solution or a control. Doubling time halved in metal-on-metal (p = 0.003) and metal-on-polyethylene (p = 0.131) particulate debris compared with the control. Bacterial nickel/cobalt-transporters allow metal ions but not wear particles to cross bacterial membranes. This may be useful for testing the biological characteristics of different wear debris. This experiment also shows that metal-on-metal hip wear debris is not bacteriocidal


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 567 - 573
1 May 2007
Keegan GM Learmonth ID Case CP

The long-term effects of metal-on-metal arthroplasty are currently under scrutiny because of the potential biological effects of metal wear debris. This review summarises data describing the release, dissemination, uptake, biological activity, and potential toxicity of metal wear debris released from alloys currently used in modern orthopaedics. The introduction of risk assessment for the evaluation of metal alloys and their use in arthroplasty patients is discussed and this should include potential harmful effects on immunity, reproduction, the kidney, developmental toxicity, the nervous system and carcinogenesis


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 133 - 141
1 Jan 2003
Kraft CN Diedrich O Burian B Schmitt O Wimmer MA

Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 540 - 546
1 May 2019
Juneau D Grammatopoulos G Alzahrani A Thornhill R Inacio JR Dick A Vogel KI Dobransky J Beaulé PE Dwivedi G

Aims. Cardiac magnetic resonance (CMR) was used to assess whether cardiac function or tissue composition was affected in patients with well-functioning metal-on-metal hip resurfacing arthroplasties (MoMHRA) when compared with a group of controls, and to assess if metal ion levels correlated with any of the functional or structural parameters studied. Patients and Methods. In all, 30 participants with no significant cardiac history were enrolled: 20 patients with well-functioning MoMHRA at mean follow-up of 8.3 years post-procedure (ten unilateral, ten bilateral; 17 men, three women) and a case-matched control group of ten non-MoM total hip arthroplasty patients (six men, four women). The mean age of the whole cohort (study group and controls) at the time of surgery was 50.6 years (41.0 to 64.0). Serum levels of cobalt and chromium were measured, and all patients underwent CMR imaging, including cine, T2* measurements, T1 and T2 mapping, late gadolinium enhancement, and strain measurements. Results. None of the MoMHRA patients showed clinically significant cardiac functional abnormality. The MoMHRA patients had larger indexed right and left end diastolic volumes (left ventricular (LV): 74 ml/m. 2. vs 67 ml/m. 2. , p = 0.045; right ventricular: 80 ml/m. 2. vs 71 ml/m. 2. , p = 0.02). There was a small decrease in T2 time in the MoMHRA patients (median 49 ms vs 54 ms; p = 0.0003). Higher metal ion levels were associated with larger LV volumes and with shorter T2 time. Conclusion. Although cardiac function is not clinically adversely affected in patients with well-functioning MoMHRA, modern imaging is able to demonstrate subtle changes in structure and function of the heart. As these changes correlate with systemic ion measurements, they may be consequences of wear debris deposition. Longer, longitudinal studies are necessary to determine whether cardiac function will become affected. . Cite this article: Bone Joint J 2019;101-B:540–546


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 10 - 15
1 Jan 2012
Ollivere B Wimhurst JA M. Clark I Donell ST

The most frequent cause of failure after total hip replacement in all reported arthroplasty registries is peri-prosthetic osteolysis. Osteolysis is an active biological process initiated in response to wear debris. The eventual response to this process is the activation of macrophages and loss of bone. Activation of macrophages initiates a complex biological cascade resulting in the final common pathway of an increase in osteolytic activity. The biological initiators, mechanisms for and regulation of this process are beginning to be understood. This article explores current concepts in the causes of, and underlying biological mechanism resulting in peri-prosthetic osteolysis, reviewing the current basic science and clinical literature surrounding the topic


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 917 - 923
1 Jul 2015
Singh G Nuechtern JV Meyer H Fiedler GM Awiszus F Junk-Jantsch S Bruegel M Pflueger G Lohmann CH

The peri-prosthetic tissue response to wear debris is complex and influenced by various factors including the size, area and number of particles. We hypothesised that the ‘biologically active area’ of all metal wear particles may predict the type of peri-prosthetic tissue response. . Peri-prosthetic tissue was sampled from 21 patients undergoing revision of a small diameter metal-on-metal (MoM) total hip arthroplasty (THA) for aseptic loosening. An enzymatic protocol was used for tissue digestion and scanning electron microscope was used to characterise particles. Equivalent circle diameters and particle areas were calculated. Histomorphometric analyses were performed on all tissue specimens. Aspirates of synovial fluid were collected for analysis of the cytokine profile analysis, and compared with a control group of patients undergoing primary THA (n = 11) and revision of a failed ceramic-on-polyethylene arthroplasty (n = 6). . The overall distribution of the size and area of the particles in both lymphocyte and non-lymphocyte-dominated responses were similar; however, the subgroup with lymphocyte-dominated peri-prosthetic tissue responses had a significantly larger total number of particles. . 14 cytokines (interleukin (IL)-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, interferon (IFN)-γ, and IFN-gamma-inducible protein 10), chemokines (macrophage inflammatory protein (MIP)-1α and MIP-1ß), and growth factors (granulocyte macrophage colony stimulating factor (GM-CSF) and platelet derived growth factor) were detected at significantly higher levels in patients with metal wear debris compared with the control group. . Significantly higher levels for IL-1ß, IL-5, IL-10 and GM-CSF were found in the subgroup of tissues from failed MoM THAs with a lymphocyte-dominated peri-prosthetic response compared with those without this response. . These results suggest that the ‘biologically active area’ predicts the type of peri-prosthetic tissue response. The cytokines IL-1ß, IL-5, IL-10, and GM-CSF are associated with lymphocyte-dominated tissue responses from failed small-diameter MoM THA. Cite this article: Bone Joint J 2015;97-B:917–23


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 28 - 37
1 Jan 2010
Jameson SS Langton DJ Nargol AVF

We present the early clinical and radiological results of Articular Surface Replacement (ASR) resurfacings in 214 hips (192 patients) with a mean follow-up of 43 months (30 to 57). The mean age of the patients was 56 years (28 to 74) and 85 hips (40%) were in 78 women. The mean Harris hip score improved from 52 (11 to 81) to 95 (27 to 100) at two years and the mean University of California, Los Angeles activity score from 3.9 (1 to 10) to 7.4 (2 to 10) in the same period. Narrowing of the neck (to a maximum of 9%) was noted in 124 of 209 hips (60%). There were 12 revisions (5.6%) involving four (1.9%) early fractures of the femoral neck and two (0.9%) episodes of collapse of the femoral head secondary to avascular necrosis. Six patients (2.8%) had failure related to metal wear debris. The overall survival for our series was 93% (95% confidence interval 80 to 98) and 89% (95% confidence interval 82 to 96) for hips with acetabular components smaller than 56 mm in diameter. The ASR implant has a lower diametrical clearance and a subhemispherical acetabular component when compared with other more frequently implanted metal-on-metal hip resurfacings. These changes may contribute to the higher failure rate than in other series, compared with other designs. Given our poor results with the small components we are no longer implanting the smaller size


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 469 - 476
1 Apr 2010
Shimmin AJ Walter WL Esposito C

The survivorship of contemporary resurfacing arthroplasty of the hip using metal-on-metal bearings is better than that of first generation designs, but short-term failures still occur. The most common reasons for failure are fracture of the femoral neck, loosening of the component, osteonecrosis of the femoral head, reaction to metal debris and malpositioning of the component. In 2008 the Australian National Joint Registry reported an inverse relationship between the size of the head component and the risk of revision in resurfacing hip arthroplasty. Hips with a femoral component size of ≤ 44 mm have a fivefold increased risk of revision than those with femoral components of ≥ 55 mm irrespective of gender. We have reviewed the literature to explore this observation and to identify possible reasons including the design of the implant, loading of the femoral neck, the orientation of the component, the production of wear debris and the effects of metal ions, penetration of cement and vascularity of the femoral head. Our conclusion is that although multifactorial, the most important contributors to failure in resurfacing arthroplasty of the hip are likely to be the design and geometry of the component and the orientation of the acetabular component


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 288 - 291
1 Mar 2003
Sampathkumar K Jeyam M Evans CE Andrew JG

Aseptic loosening of orthopaedic implants is usually attributed to the action of wear debris from the prosthesis. Recent studies, however, have also implicated physical pressures in the joint as a further cause of loosening. We have examined the role of both wear debris and pressure on the secretion of two chemokines, MIP-1α and MCP-1, together with M-CSF and PGE2, by human macrophages in vitro. The results show that pressure alone stimulated the secretion of more M-CSF and PGE. 2. when compared with control cultures. Particles alone stimulated the secretion of M-CSF and PGE. 2. , when compared with unstimulated control cultures, but did not stimulate the secretion of the two chemokines. Exposure of macrophages to both stimuli simultaneously had no synergistic effect on the secretion of the chemokines, but both M-CSF and PGE. 2. were increased in a synergistic manner. Our findings suggest that pressure may be an initiating factor for the recruitment of cells into the periprosthetic tissue


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 475 - 482
1 May 1997
Allen MJ Myer BJ Millett PJ Rushton N

Particulate wear debris can induce the release of bone-resorbing cytokines from cultured macrophages and fibroblasts in vitro, and these mediators are believed to be the cause of the periprosthetic bone resorption which leads to aseptic loosening in vivo. Much less is known about the effects of particulate debris on the growth and metabolism of osteoblastic cells. We exposed two human osteoblast-like cell lines (SaOS-2 and MG-63) to particulate cobalt, chromium and cobalt-chromium alloy at concentrations of 0, 0.01, 0.1 and 1.0 mg/ml. Cobalt was toxic to both cell lines and inhibited the production of type-I collagen, osteocalcin and alkaline phosphatase. Chromium and cobalt-chromium were well tolerated by both cell lines, producing no cytotoxicity and no inhibition of type-I collagen synthesis. At the highest concentration tested (1.0 mg/ml), however, chromium inhibited alkaline phosphatase activity, and both chromium and cobalt-chromium alloy inhibited osteocalcin expression. Our results clearly show that particulate metal debris can modulate the growth and metabolism of osteoblastic cells in vitro. Reduced osteoblastic activity at the bone-implant interface may be an important mechanism by which particulate wear debris influences the pathogenesis of aseptic loosening in vivo


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1470 - 1474
1 Nov 2015
Selvarajah E Hooper G Grabowski K Frampton C Woodfield TBF Inglis G

Polyethylene wear debris can cause osteolysis and the failure of total hip arthroplasty. We present the five-year wear rates of a highly cross-linked polyethylene (X3) bearing surface when used in conjunction with a 36 mm ceramic femoral head. This was a prospective study of a cohort of 100 THAs in 93 patients. Pain and activity scores were measured pre- and post-operatively. Femoral head penetration was measured at two months, one year, two years and at five years using validated edge-detecting software (PolyWare Auto). At a mean of 5.08 years (3.93 to 6.01), 85 hips in 78 patients were available for study. The mean age of these patients was 59.08 years (42 to 73, the mean age of males (n = 34) was 59.15 years, and females (n = 44) was 59.02 years). All patients had significant improvement in their functional scores (p < 0.001). The steady state two-dimensional linear wear rate was 0.109 mm/year. The steady state volumetric wear rate was 29.61 mm. 3. /year. No significant correlation was found between rate of wear and age (p = 0.34), acetabular component size (p = 0.12) or clinical score (p = 0.74). Our study shows low steady state wear rates at five years in X3 highly cross-linked polyethylene in conjunction with a 36 mm ceramic femoral head. The linear wear rate was almost identical to the osteolysis threshold of 0.1 mm/year recommended in the literature. Cite this article: Bone Joint J 2015;97-B:1470–4