The patellar clunk syndrome describes painful catching, grinding or jumping of the patella when the knee moves from a flexed to an extended position after total knee replacement (TKR). The posterior stabilised TKR had been noted to have a higher incidence of this problem. Mobile-bearing posteriorly stabilised TKRs have been introduced to improve
Objective patellar instability has been correlated with dysplasia of the femoral trochlea. This in vitro study tested the hypothesis that trochleoplasty would increase patellar stability and normalise the kinematics of a knee with a dysplastic trochlea. Six fresh-frozen knees were loaded via the heads of the quadriceps. The patella was displaced 10 mm laterally and the displacing force was measured from 0° to 90° of flexion.
Aims. Between 15% and 20% of patients remain dissatisfied following total knee arthroplasty (TKA). The SAIPH knee system (MatOrtho, Surrey, United Kingdom) is a medial ball and socket TKA that has been designed to replicate native knee kinematics in order to maximize the range of movement, stability, and function. This system is being progressively introduced in a stepwise fashion, with this study reporting the mid-term clinical and radiological outcomes. Patients and Methods. A retrospective review was undertaken of the first 100 consecutive patients with five-year follow-up following SAIPH TKA performed by the senior authors. The data that were collected included the demographics of the patients, clinical findings, the rate of intraoperative ligamentous release, patient-reported outcome measures (PROMS), radiological assessment, complications, and all-cause revision. Revision data were cross-checked with a national registry. Results. A total of 100 TKAs in 92 patients were included. Three patients died (three TKAs) and a further two TKAs were revised. Of the remaining 95 TKAs, five-year follow-up data were available for 81 TKAs (85%) in 87 patients. There were significant improvements in all PROMs and high satisfaction. The mean ROM at final follow-up was from 0° (full extension) to 124° flexion. There were seven major complications (7%): one infection, two deep vein thromboses, one cerebrovascular event, and two patients with stiffness requiring a manipulation under anaesthesia. Two patients required a lateral retinacular release to optimize
There are many reasons why a total knee replacement
(TKR) may fail and qualify for revision. Successful revision surgery
depends as much on accurate assessment of the problem TKR as it
does on revision implant design and surgical technique. Specific
modes of failure require specific surgical solutions. Causes of
failure are often presented as a list or catalogue, without a system
or process for making a decision. In addition, strict definitions
and consensus on modes of failure are lacking in published series
and registry data. How we approach the problem TKR is an essential
but neglected aspect of understanding knee replacement surgery.
It must be carried out systematically, comprehensively and efficiently.
Eight modes of failure are described: 1) sepsis; 2) extensor discontinuity;
3) stiffness; 4) tibial- femoral instability; 5)
We report a prospective analysis of clinical
outcome in patients treated with medial patellofemoral ligament
(MPFL) reconstruction using an autologous semitendinosus graft.
The technique includes superolateral portal arthroscopic assessment
before and after graft placement to ensure correct graft tension
and
In 11 paediatric patients (seven girls and four
boys, from 12 to 15 years old) with unilateral obligatory patellar dislocation
and ligamentous laxity vastus medialis advancement, lateral release,
partial patellar ligament transposition and Galeazzi semitendinosus
tenodesis was undertaken to stabilise the patella. The diagnostic criterion
for ligamentous laxity was based on the Beighton scale. Outcomes
were evaluated radiologically and functionally by measurement of
the range of knee movement and isokinetic testing. The evaluation
also included the Lysholm knee scale. Follow-up studies took place
at a mean of 8.1 years (5 to 15) post-operatively. Normal
The lateral subvastus approach combined with an osteotomy of the tibial tubercle is a recognised, but rarely used approach for total knee replacement (TKR). A total of 32 patients undergoing primary TKR was randomised into two groups, in one of which the lateral subvastus approach combined with a tibial tubercle osteotomy and in the other the medial parapatellar approach were used. The patients were assessed radiologically and clinically using measurement of the range of movement, a visual analogue patient satisfaction score, the Western Ontario McMasters University Osteoarthritis Index and the American Knee Society score. Four patients were lost to the complete follow-up at two years. At two years there were no significant differences between the groups in any of the parameters for clinical outcome. In the lateral approach group there was one complication due to displacement of the tibial tubercle osteotomy and two osteotomies took more than six months to unite. In the medial approach group, one patient had a partial tear of the quadriceps. There was a significantly greater incidence of lateral patellar subluxation in the medial approach group (3 of 12) compared with the lateral approach group (0 of 16) (p = 0.034), but without any apparent clinical detriment. We conclude that the lateral approach with tibial tubercle osteotomy is a safe technique with an outcome comparable with that of the medial parapatellar approach for TKR, but the increased surgical time and its specific complications do not support its routine use. It would seem to be more appropriate to reserve this technique for patients in whom problems with
Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article:
This systematic review and meta-analysis aimed to compare the influence of patellar resurfacing following cruciate-retaining (CR) and posterior-stabilized (PS) total knee arthroplasty (TKA) on the incidence of anterior knee pain, knee-specific patient-reported outcome measures, complication rates, and reoperation rates. A systematic review of MEDLINE, PubMed, and Google Scholar was performed to identify randomized controlled trials (RCTs) according to search criteria. Search terms used included: arthroplasty, replacement, knee (Mesh), TKA, prosthesis, patella, patellar resurfacing, and patellar retaining. RCTs that compared patellar resurfacing versus unresurfaced in primary TKA were included for further analysis. Studies were evaluated using the Scottish Intercollegiate Guidelines Network assessment tool for quality and minimization of bias. Data were synthesized and meta-analysis performed.Aims
Methods
Total knee arthroplasty (TKR) using a medial capsular approach gives worse results in arthritic knees with valgus deformity than in those in varus, usually because of swelling, poor wound healing and stiffness, instability, recurrent valgus deformity and poor
The Q angle is an important determinant of
Magnetic resonance imaging was used to analyse the patellofemoral relationships during the first 30 degrees of knee flexion in women with recurrent patellar dislocation. The patellofemoral joints were imaged both sagittally and axially with the knee flexed 0 degrees, 10 degrees, 20 degrees, and 30 degrees. At the beginning of knee flexion the sulcus angle was greater than in unaffected women, the lateral patellofemoral angle was smaller, the patella displaced further laterally, tilted more laterally and the congruence angle was directed more laterally. At 30 degrees of knee flexion these differences were less marked than at 0 degree to 10 degrees. Logistic regression analysis showed that the sulcus angle at 10 degrees of knee flexion was the most diagnostic feature, indicating that there is an anatomical predisposition to recurrent dislocation and that pathological
The use of cementless total knee arthroplasty (TKA) components has increased during the past decade. The initial design of cementless metal-backed patellar components had shown high failure rates due to many factors. The aim of this study was to evaluate the clinical results of a second-generation cementless, metal-backed patellar component of a modern design. This was a retrospective review of 707 primary TKAs in 590 patients from a single institution, using a cementless, metal-backed patellar component with a mean follow-up of 6.9 years (2 to 12). A total of 409 TKAs were performed in 338 females and 298 TKAs in 252 males. The mean age of the patients was 63 years (34 to 87) and their mean BMI was 34.3 kg/m2 (18.8 to 64.5). The patients were chosen to undergo a cementless procedure based on age and preoperative radiological and intraoperative bone quality. Outcome was assessed using the Knee Society knee and function scores and range of motion (ROM), complications, and revisions.Aims
Methods
This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height. Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components.Aims
Methods
The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.Aims
Methods
Evaluating musculoskeletal conditions of the lower limb and understanding the pathophysiology of complex bone kinematics is challenging. Static images do not take into account the dynamic component of relative bone motion and muscle activation. Fluoroscopy and dynamic MRI have important limitations. Dynamic CT (4D-CT) is an emerging alternative that combines high spatial and temporal resolution, with an increased availability in clinical practice. 4D-CT allows simultaneous visualization of bone morphology and joint kinematics. This unique combination makes it an ideal tool to evaluate functional disorders of the musculoskeletal system. In the lower limb, 4D-CT has been used to diagnose femoroacetabular impingement, patellofemoral, ankle and subtalar joint instability, or reduced range of motion. 4D-CT has also been used to demonstrate the effect of surgery, mainly on patellar instability. 4D-CT will need further research and validation before it can be widely used in clinical practice. We believe, however, it is here to stay, and will become a reference in the diagnosis of lower limb conditions and the evaluation of treatment options. Cite this article:
This study compared the cobalt and chromium serum ion concentration of patients treated with two different metal-on-metal (MoM) hinged total knee arthroplasty (TKA) systems, as well as a titanium nitride (TiN)-coated variant. A total of 63 patients (65 implants) were treated using either a MoM-coated (n = 29) or TiN-coated (n = 7) hinged TKA (GenuX mobile bearing, MUTARS; Implantcast, Germany) versus the BPKS (Brehm, Germany) hinged TKA (n = 27), in which the weight placed on the MoM hinge is diffused through a polyethylene (PE) inlay, reducing the direct load on the MoM hinge. Serum cobalt and chromium ion concentrations were assessed after minimum follow-up of 12 months, as well as functional outcome and quality of life.Aims
Methods
Rotating-hinge knee prostheses are commonly used to reconstruct the distal femur after resection of a tumour, despite the projected long-term burden of reoperation due to complications. Few studies have examined the factors that influence their failure and none, to our knowledge, have used competing risk models to do so. The purpose of this study was to determine the risk factors for failure of a rotating-hinge knee distal femoral arthroplasty using the Fine-Gray competing risk model. We retrospectively reviewed 209 consecutive patients who, between 1991 and 2016, had undergone resection of the distal femur for tumour and reconstruction using a rotating-hinge knee prosthesis. The study endpoint was failure of the prosthesis, defined as removal of the femoral component, the tibial component, or the bone-implant fixation; major revision (exchange of the femoral component, tibial component, or the bone-implant fixation); or amputation.Aims
Methods
In the last decade, interest in partial knee arthroplasties and bicruciate retaining total knee arthroplasties has increased. In addition, patient-related outcomes and functional results such as range of movement and ambulation may be more promising with less invasive procedures such as bicompartmental arthroplasty (BCA). The purpose of this study is to evaluate clinical and radiological outcomes after a third-generation patellofemoral arthroplasty (PFA) combined with a medial or lateral unicompartmental knee arthroplasty (UKA) at mid- to long-term follow-up. A total of 57 procedures were performed. In 45 cases, a PFA was associated with a medial UKA and, in 12, with a lateral UKA. Patients were followed with validated patient-reported outcome measures (Oxford Knee Score (OKS), EuroQol five-dimension questionnaire (EQ-5D), EuroQoL Visual Analogue Scale (EQ-VAS)), the Knee Society Score (KSS), the Forgotten Joint Score (FJS), and radiological analysis.Aims
Methods
The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.Aims
Methods