Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1154 - 1159
1 Sep 2012
Gibbs DMR Green TP Esler CN

Controversy remains regarding the optimal post-operative analgesic regimen following total knee replacement. A delicate balance is required between the provision of adequate pain relief and early mobilisation. By reviewing 29 randomised trials we sought to establish whether local infiltration of analgesia directly into the knee during surgery provides better pain relief and a more rapid rehabilitation. Although we were able to conclude that local infiltration can provide improved post-operative pain relief, and to suggest the most promising technique of administration, there is no evidence that it reduces hospital stay.


The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 24 - 33
1 Jan 2019
Kayani B Konan S Tahmassebi J Rowan FE Haddad FS

Aims. The objectives of this study were to compare postoperative pain, analgesia requirements, inpatient functional rehabilitation, time to hospital discharge, and complications in patients undergoing conventional jig-based unicompartmental knee arthroplasty (UKA) versus robotic-arm assisted UKA. Patients and Methods. This prospective cohort study included 146 patients with symptomatic medial compartment knee osteoarthritis undergoing primary UKA performed by a single surgeon. This included 73 consecutive patients undergoing conventional jig-based mobile bearing UKA, followed by 73 consecutive patients receiving robotic-arm assisted fixed bearing UKA. All surgical procedures were performed using the standard medial parapatellar approach for UKA, and all patients underwent the same postoperative rehabilitation programme. Postoperative pain scores on the numerical rating scale and opiate analgesia consumption were recorded until discharge. Time to attainment of predefined functional rehabilitation outcomes, hospital discharge, and postoperative complications were recorded by independent observers. Results. Robotic-arm assisted UKA was associated with reduced postoperative pain (p < 0.001), decreased opiate analgesia requirements (p < 0.001), shorter time to straight leg raise (p < 0.001), decreased number of physiotherapy sessions (p < 0.001), and increased maximum knee flexion at discharge (p < 0.001) compared with conventional jig-based UKA. Mean time to hospital discharge was reduced in robotic UKA compared with conventional UKA (42.5 hours (. sd 5.9). vs 71.1 hours (. sd. 14.6), respectively; p < 0.001). There was no difference in postoperative complications between the two groups within 90 days’ follow-up. Conclusion. Robotic-arm assisted UKA was associated with decreased postoperative pain, reduced opiate analgesia requirements, improved early functional rehabilitation, and shorter time to hospital discharge compared with conventional jig-based UKA


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims

Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA.

Methods

This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 102 - 107
1 Jun 2021
Feng JE Ikwuazom CP Mahure SA Waren DP Slover JD Schwarzkopf RS Long WJ Macaulay WB

Aims

Liposomal bupivacaine (LB) as part of a periarticular injection protocol continues to be a highly debated topic in total knee arthroplasty (TKA). We evaluated the effect of discontinuing the use of LB in a periarticular protocol on immediate postoperative pain scores, opioid consumption, and objective functional outcomes.

Methods

On 1 July 2019, we discontinued the use of intraoperative LB as part of a periarticular injection protocol. A consecutive group of patients who received LB as part of the protocol (Protocol 1) and a subsequent group who did not (Protocol 2) were compared. All patients received the same opioid-sparing protocol. Verbal rating scale (VRS) pain scores were collected from our electronic data warehouse and averaged per patient per 12-hour interval. Events relating to the opiate administration were derived as morphine milligram equivalences (MMEs) per patient per 24-hour interval. The Activity Measure for Post-Acute Care (AM-PAC) tool was used to assess the immediate postoperative function.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims

The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups.

Methods

This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.