Advertisement for orthosearch.org.uk
Results 1 - 20 of 810
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1234 - 1240
1 Sep 2012
Willcox NMJ Clarke JV Smith BRK Deakin AH Deep K

We compared lower limb coronal alignment measurements obtained pre- and post-operatively with long-leg radiographs and computer navigation in patients undergoing primary total knee replacement (TKR). A series of 185 patients had their pre- and post-implant radiological and computer-navigation system measurements of coronal alignment compared using the Bland-Altman method. The study included 81 men and 104 women with a mean age of 68.5 years (32 to 87) and a mean body mass index of 31.7 kg/m. 2. (19 to 49). Pre-implant Bland–Altman limits of agreement were -9.4° to 8.6° with a repeatability coefficient of 9.0°. The Bland–Altman plot showed a tendency for the radiological measurement to indicate a higher level of pre-operative deformity than the corresponding navigation measurement. Post-implant limits of agreement were -5.0° to 5.4° with a repeatability coefficient of 5.2°. The tendency for valgus knees to have greater deformity on the radiograph was still seen, but was weaker for varus knees. . The alignment seen or measured intra-operatively during TKR is not necessarily the same as the deformity seen on a standing long-leg radiograph either pre- or post-operatively. Further investigation into the effect of weight-bearing and surgical exposure of the joint on the mechanical femorotibial angle is required to enable the most appropriate intra-operative alignment to be selected


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 87 - 93
1 Jun 2021
Chalmers BP Elmasry SS Kahlenberg CA Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK Cross MB

Aims. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture, which leads to femoral joint line elevation. There is a paucity of data describing the effect of joint line elevation on mid-flexion stability and knee kinematics. Thus, the goal of this study was to quantify the effect of joint line elevation on mid-flexion laxity. Methods. Six computational knee models with cadaver-specific capsular and collateral ligament properties were implanted with a posterior-stabilized (PS) TKA. A 10° flexion contracture was created in each model to simulate a capsular contracture. Distal femoral resections of + 2 mm and + 4 mm were then simulated for each knee. The knee models were then extended under a standard moment. Subsequently, varus and valgus moments of 10 Nm were applied as the knee was flexed from 0° to 90° at baseline and repeated after each of the two distal resections. Coronal laxity (the sum of varus and valgus angulation with respective maximum moments) was measured throughout flexion. Results. With + 2 mm resection at 30° and 45° of flexion, mean coronal laxity increased by a mean of 3.1° (SD 0.18°) (p < 0.001) and 2.7° (SD 0.30°) (p < 0.001), respectively. With + 4 mm resection at 30° and 45° of flexion, mean coronal laxity increased by 6.5° (SD 0.56°) (p < 0.001) and 5.5° (SD 0.72°) (p < 0.001), respectively. Maximum increased coronal laxity for a + 4 mm resection occurred at a mean 15.7° (11° to 33°) of flexion with a mean increase of 7.8° (SD 0.2°) from baseline. Conclusion. With joint line elevation in primary PS TKA, coronal laxity peaks early (about 16°) with a maximum laxity of 8°. Surgeons should restore the joint line if possible; however, if joint line elevation is necessary, we recommend assessment of coronal laxity at 15° to 30° of knee flexion to assess for mid-flexion instability. Further in vivo studies are warranted to understand if this mid-flexion coronal laxity has negative clinical implications. Cite this article: Bone Joint J 2021;103-B(6 Supple A):87–93


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 43 - 48
1 Jun 2020
D’Lima DP Huang P Suryanarayan P Rosen A D’Lima DD

Aims. The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation. Methods. We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph. Results. Axial rotation of the cutting guide induced a varus-valgus malalignment up to 1.8° (for 15° of axial rotation combined with 7° of posterior slope). Axial malrotation of tibial tray induced a substantially higher risk of coronal plane malalignment ranging from 1.9° valgus with 15° external rotation, to over 3° varus with 25° of internal rotation. Coronal alignment of the tibial cut changed by 0.07° per degree of axial rotation and 0.22° per degree of posterior slope (linear regression, R. 2. > 0.99). Conclusion. While the effect of axial malalignment has been studied, the impact on coronal alignment is not known. Our results indicate that the direction of the cutting guide and malalignment in axial rotation alter coronal plane alignment and can increase the incidence of outliers. Cite this article: Bone Joint J 2020;102-B(6 Supple A):43–48


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). Methods. A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type. Results. There was similar frequency distribution between healthy and arthritic groups across all CPAK types. The most common categories were Type II (39.2% healthy vs 32.2% OA), Type I (26.4% healthy vs 19.4% OA) and Type V (15.4% healthy vs 14.6% OA). CPAK Types VII, VIII, and IX were rare in both populations. Across all CPAK types, a greater proportion of KA TKAs achieved optimal balance compared to MA. This effect was largest, and statistically significant, in CPAK Types I (100% KA vs 15% MA; p < 0.001), Type II (78% KA vs 46% MA; p = 0.018). and Type IV (89% KA vs 0% MA; p < 0.001). Conclusion. CPAK is a pragmatic, comprehensive classification for coronal knee alignment, based on constitutional alignment and JLO, that can be used in healthy and arthritic knees. CPAK identifies which knee phenotypes may benefit most from KA when optimization of soft tissue balance is prioritized. Further, it will allow for consistency of reporting in future studies. Cite this article: Bone Joint J 2021;103-B(2):329–337


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 688 - 695
1 Jun 2023
Johnston GHF Mastel M Sims LA Cheng Y

Aims. The aims of this study were to identify means to quantify coronal plane displacement associated with distal radius fractures (DRFs), and to understand their relationship to radial inclination (RI). Methods. From posteroanterior digital radiographs of healed DRFs in 398 female patients aged 70 years or older, and 32 unfractured control wrists, the relationships of RI, quantifiably, to four linear measurements made perpendicular to reference distal radial shaft (DRS) and ulnar shaft (DUS) axes were analyzed: 1) DRS to radial aspect of ulnar head (DRS-U); 2) DUS to volar-ulnar corner of distal radius (DUS-R); 3) DRS to proximal capitate (DRS-PC); and 4) DRS to DUS (interaxis distance, IAD); and, qualitatively, to the distal ulnar fracture, and its intersection with the DUS axis. Results. In the study (fracture) and control groups, respectively, the mean values were: RI, 17.2° (SD 7.2°; -7° to 35°) and 25.6° (SD 2.6°; 21° to 30°); DRS-U, 13.5 mm (SD 1.7; 4.9 to 20.8) and 15.3 mm (SD 0.72; 13.8 to 16.3); DUS-R, 13.4 mm (SD 2.1; 4.8 to 18.5) and 12.0 mm (SD 0.99; 9.7 to 13.9); DRS-PC (positive value radial to DRS, negative value ulnar), 0.14 mm (SD 5.4; -10.9 to 22.7) and -6.1 mm (SD 1.6; -10.6 to -2.3); and IAD, 25.3 mm (SD 2.5; 17.6 to 31.1) and 27.1 mm (SD 1.5; 24.5 to 31.0). All means were significantly different between the study and control groups. RI correlated strongly with DRS-PC. Ulnar styloid fracture intersection with the DUS axis, reflective of ulnar translation of both radial and ulnar shafts, was associated with significantly lower RI. Conclusion. After DRF, the relationship of the proximal capitate to the DRS axis in the coronal plane correlates with the final radial inclination. Additionally, ulnar styloid intersection with the DUS axis is associated with even lower radial inclination. DRF reduction should seek to restore the normal coronal relationship of both radial and ulnar shafts to their distal counterparts. Cite this article: Bone Joint J 2023;105-B(6):688–695


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1059 - 1066
1 Oct 2024
Konishi T Hamai S Tsushima H Kawahara S Akasaki Y Yamate S Ayukawa S Nakashima Y

Aims. The Coronal Plane Alignment of the Knee (CPAK) classification has been developed to predict individual variations in inherent knee alignment. The impact of preoperative and postoperative CPAK classification phenotype on the postoperative clinical outcomes of total knee arthroplasty (TKA) remains elusive. This study aimed to examine the effect of postoperative CPAK classification phenotypes (I to IX), and their pre- to postoperative changes on patient-reported outcome measures (PROMs). Methods. A questionnaire was administered to 340 patients (422 knees) who underwent primary TKA for osteoarthritis (OA) between September 2013 and June 2019. A total of 231 patients (284 knees) responded. The ­Knee Society Score 2011 (KSS 2011), Knee injury and Osteoarthritis Outcome Score-12 (KOOS-12), and Forgotten Joint Score-12 (FJS-12) were used to assess clinical outcomes. Using preoperative and postoperative anteroposterior full-leg radiographs, the arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) were calculated and classified based on the CPAK classification. To investigate the impact on PROMs, multivariable regression analyses using stepwise selection were conducted, considering factors such as age at surgery, time since surgery, BMI, sex, implant use, postoperative aHKA classification, JLO classification, and changes in aHKA and JLO classifications from preoperative to postoperative. Results. The preoperative and postoperative CPAK classifications were predominantly phenotype I (155 knees; 55%) and phenotype V (73 knees; 26%), respectively. The change in the preoperative to postoperative aHKA classification was a significant negative predictive factor for KOOS-12 and FJS-12, while postoperative apex proximal JLO was a significant negative predictive factor for KSS 2011 and KOOS-12. Conclusion. In primary TKA for OA, preoperative and postoperative CPAK phenotypes were associated with PROMs. Alteration in varus/valgus alignment from preoperative to postoperative was recognized as a negative predictive factor for both KOOS-12 and FJS-12. Moreover, the postoperative apex proximal JLO was identified as a negative factor for KSS 2011 and KOOS-12. Determining the target alignment for each preoperative phenotype with reproducibility could improve PROMs. Cite this article: Bone Joint J 2024;106-B(10):1059–1066


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 628 - 633
1 May 2016
Heijens E Kornherr P Meister C

Aims. In patients undergoing medial opening wedge high tibial osteotomy (MOWHTO), soft tissue opening on the medial side of the knee is difficult to predict. When the load bearing axis is corrected beyond a certain point, the knee joint tilts open on the medial side. We therefore hypothesised that there is a tipping point and defined this as the coronal hypomochlion. Patients and Methods. In this prospective study of 150 navigated MOWHTOs (144 consecutive patients), data were collected before surgery and at three months post-operatively. In order to calculate the hypomochlion, we compared the respective changes to the joint line convergence angle (JLCA) with the post-operative axis of the leg. The change to the medial proximal tibial angle accounts for only about 80% of the change to the femorotibial angle; 20% of the correction can therefore be attributed to non-osseous, soft-tissue changes. Results. We were able to demonstrate a linear change of JLCA in a range of 0° to 5° of valgus which started when the post-operative long-leg axis was corrected beyond 2° of valgus. Conclusion. We found that the coronal hypomochlion occurs at 2° of valgus. Take home message: It is recommended to plan realignment for medial open wedge high tibial osteotomy at a maximum of 2° valgus. Cite this article: Bone Joint J 2016;98-B:628–33


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1227 - 1233
1 Sep 2016
Bao H Yan P Qiu Y Liu Z Zhu F

Aims. There is a paucity of information on the pre-operative coronal imbalance in patients with degenerative lumbar scoliosis (DLS) and its influence on surgical outcomes. Patients and Methods. A total of 284 DLS patients were recruited into this study, among whom 69 patients were treated surgically and the remaining 215 patients conservatively Patients were classified based on the coronal balance distance (CBD): Type A, CBD < 3 cm; Type B, CBD > 3 cm and C7 Plumb Line (C7PL) shifted to the concave side of the curve; Type C, CBD > 3 cm and C7PL shifted to the convex side. Results. A total of 99 of the 284 (34.8%) patient presented with a pre-operative coronal imbalance (mean CBD: 48.5, standard deviation 18.7 mm). More patients with a Type B malalignment were observed than with a Type C malalignment (62 versus 37). A total of 21 pf the 69 (30.4%) surgically treated patients had a post-operative coronal imbalance, which was found to be more prevalent in Type C patients (p < 0.001). At follow-up, less improvement was observed in terms of Short Form-36 Physical Component Score and visual analogue score for back pain (p = 0.034 and 0.025, respectively) in Type C patients. Conclusion. This study shows that patients with Type C coronal malalignment may be at greater risk of post-operative coronal imbalance following posterior osteotomy. Cite this article: Bone Joint J 2016;98-B:1227–33


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 338 - 346
1 Feb 2021
Khow YZ Liow MHL Lee M Chen JY Lo NN Yeo SJ

Aims. This study aimed to identify the tibial component and femoral component coronal angles (TCCAs and FCCAs), which concomitantly are associated with the best outcomes and survivorship in a cohort of fixed-bearing, cemented, medial unicompartmental knee arthroplasties (UKAs). We also investigated the potential two-way interactions between the TCCA and FCCA. Methods. Prospectively collected registry data involving 264 UKAs from a single institution were analyzed. The TCCAs and FCCAs were measured on postoperative radiographs and absolute angles were analyzed. Clinical assessment at six months, two years, and ten years was undertaken using the Knee Society Knee score (KSKS) and Knee Society Function score (KSFS), the Oxford Knee Score (OKS), the 36-Item Short-Form Health Survey questionnaire (SF-36), and range of motion (ROM). Fulfilment of expectations and satisfaction was also recorded. Implant survivorship was reviewed at a mean follow-up of 14 years (12 to 16). Multivariate regression models included covariates, TCCA, FCCA, and two-way interactions between them. Partial residual graphs were generated to identify angles associated with the best outcomes. Kaplan-Meier analysis was used to compare implant survivorship between groups. Results. Significant two-way interaction effects between TCCA and FCCA were identified. Adjusted for each other and their interaction, a TCCA of between 2° and 4° and a FCCA of between 0° and 2° were found to be associated with the greatest improvements in knee scores and the probability of fulfilling expectations and satisfaction at ten years. Patients in the optimal group whose TCCA and FCCA were between 2° and 4°, and 0° and 2°, respectively, had a significant survival benefit at 15 years compared with the non-optimal group (optimal: survival = 100% vs non-optimal: survival = 92%, 95% confidence interval (CI) 88% to 96%). Conclusion. Significant two-way interactions between the TCCA and FCCA demonstrate the importance of evaluating the alignment of the components concomitantly in future studies. By doing so, we found that patients who concomitantly had both a TCCA of between 2° and 4° and a FCCA of between 0° and 2° had the best patient-reported outcome measures at ten years and better survivorship at 15 years. Cite this article: Bone Joint J 2021;103-B(2):338–346


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 5 | Pages 709 - 714
1 Sep 1991
Jeffery R Morris R Denham R

Maquet's line passes from the centre of the femoral head to the centre of the body of the talus. The distance of this line from the centre of the knee on a long-leg radiograph provides the most accurate measure of coronal alignment. Malalignment causes abnormal forces which may lead to loosening after knee replacement. We report a series of 115 Denham knee replacements performed between 1976 and 1981 using the earliest design of components, inserted with intramedullary guide rods. Patients were assessed clinically and long-leg standing radiographs were taken before operation, soon after surgery and up to 12 years later. In two-thirds of the knees (68%) Maquet's line passed through the middle third of the prosthesis on postoperative films and the incidence of subsequent loosening was 3%. When Maquet's line was medial or lateral to this, an error of approximately +/- 3 degrees, the incidence of loosening at a median period of eight years was 24%. This difference is highly significant (p = 0.001). Accurate coronal alignment appears to be an important factor in prevention of loosening. Means of improving the accuracy of alignment and of measuring it on long-leg radiographs are discussed


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1165 - 1171
1 Sep 2013
Arastu MH Kokke MC Duffy PJ Korley REC Buckley RE

Coronal plane fractures of the posterior femoral condyle, also known as Hoffa fractures, are rare. Lateral fractures are three times more common than medial fractures, although the reason for this is not clear. The exact mechanism of injury is likely to be a vertical shear force on the posterior femoral condyle with varying degrees of knee flexion. These fractures are commonly associated with high-energy trauma and are a diagnostic and surgical challenge. Hoffa fractures are often associated with inter- or supracondylar distal femoral fractures and CT scans are useful in delineating the coronal shear component, which can easily be missed. There are few recommendations in the literature regarding the surgical approach and methods of fixation that may be used for this injury. Non-operative treatment has been associated with poor outcomes. The goals of treatment are anatomical reduction of the articular surface with rigid, stable fixation to allow early mobilisation in order to restore function. A surgical approach that allows access to the posterior aspect of the femoral condyle is described and the use of postero-anterior lag screws with or without an additional buttress plate for fixation of these difficult fractures. Cite this article: Bone Joint J 2013;95-B:1165–71


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 1 | Pages 118 - 120
1 Jan 1989
Lewis S Pozo J Muirhead-Allwood W

We reviewed seven patients with coronal fractures of the lateral femoral condyle and studied the mechanism of injury and the radiological features. The influence of soft tissue attachments on the displacement and the blood supply were investigated by clinical and cadaveric studies. All three fractures which were initially undisplaced lost position early during conservative management. Internal fixation gave good results at review, and is recommended to avoid the risk of malunion and possible secondary osteoarthritis


The Journal of Bone & Joint Surgery British Volume
Vol. 69-B, Issue 4 | Pages 602 - 603
1 Aug 1987
Gasco J Del Pino J Gomar-Sancho F

A case of duplication of the patella in the coronal plane is reported. Previously reported cases of double patella have shown sagittal or vertical duplication, and some have been associated with multiple epiphyseal dysplasia. In our case, excision of one patella and realignment of the extensor mechanism relieved symptoms of giving-way


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 428 - 436
1 Apr 2001
Lovász G Park SH Ebramzadeh E Benya PD Llinás A Bellyei Á Luck JV Sarmiento A

To investigate the effect of instability on the remodelling of a minor articular surface offset, we created a 0.5 mm coronal step-off of the medial femoral condyle in 12 New Zealand white rabbits and transected the anterior cruciate ligament (ACL). A control group of 12 rabbits had only ACL resection and the opposite knee was used as the non-operated control. The osteoarthritic changes at 6, 12 and 24 weeks after surgery were evaluated histologically. In addition, changes in the immunological detection of 3-B-3(-) and 7-D-4 chondroitin-6-sulphate epitopes were determined because of the previous association of such changes with repair of cartilage and early osteoarthritis. In the instability/step-off group there was rapidly progressing focal degeneration of cartilage on the high side of the defect, not seen in previous step-off studies in stable knees. The rest of the femoral condyles and the tibial plateaux of the instability/step-off group had moderate osteoarthritis similar to that of the instability group. 3-B-3(-) was detectable in the early and the intermediate stages of osteoarthritis but no staining was seen in the severely damaged cartilage zones. Immunoreactivity with 7-D-4 increased as degeneration progressed. Our findings have shown that even a minor surface offset may induce rapid degeneration of cartilage when the stability of the knee is compromised


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 857 - 862
1 Jul 2014
Abdel MP Oussedik S Parratte S Lustig S Haddad FS

Substantial healthcare resources have been devoted to computer navigation and patient-specific instrumentation systems that improve the reproducibility with which neutral mechanical alignment can be achieved following total knee replacement (TKR). This choice of alignment is based on the long-held tenet that the alignment of the limb post-operatively should be within 3° of a neutral mechanical axis. Several recent studies have demonstrated no significant difference in survivorship when comparing well aligned versus malaligned TKRs. Our aim was to review the anatomical alignment of the knee, the historical and contemporary data on a neutral mechanical axis in TKR, and the feasibility of kinematically-aligned TKRs.

Review of the literature suggests that a neutral mechanical axis remains the optimal guide to alignment.

Cite this article: Bone Joint J 2014;96-B:857–62.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 969 - 973
1 Jul 2012
Iwata T Nozawa S Dohjima T Yamamoto T Ishimaru D Tsugita M Maeda M Shimizu K

A delay in establishing the diagnosis of an occult fracture of the hip that remains unrecognised after plain radiography can result in more complex treatment such as an arthroplasty being required. This might be avoided by earlier diagnosis using MRI. The aim of this study was to investigate the best MR imaging sequence for diagnosing such fractures. From a consecutive cohort of 771 patients admitted between 2003 and 2011 with a clinically suspected fracture of the hip, we retrospectively reviewed the MRI scans of the 35 patients who had no evidence of a fracture on their plain radiographs. In eight of these patients MR scanning excluded a fracture but the remaining 27 patients had an abnormal scan: one with a fracture of the pubic ramus, and in the other 26 a T1-weighted coronal MRI showed a hip fracture with 100% sensitivity. T2-weighted imaging was undertaken in 25 patients, in whom the diagnosis could not be established with this scanning sequence alone, giving a sensitivity of 84.0% for T2-weighted imaging.

If there is a clinical suspicion of a hip fracture with normal radiographs, T1-weighted coronal MRI is the best sequence of images for identifying a fracture.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 345 - 350
1 Mar 2011
Huang T Hsu W Peng K Hsu RW

We conducted a retrospective study to investigate the effect of femoral bowing on the placement of components in total knee replacement (TKR), with regard to its effect on reestablishing the correct mechanical axis, as we hypothesised that computer-assisted total knee replacement (CAS-TKR) would produce more accurate alignment than conventional TKR. Between January 2006 and December 2009, 212 patients (306 knees) underwent TKR. The conventional TKR was compared with CAS-TKR for accuracy of placement of the components and post-operative alignment, as determined by five radiological measurements. There were significant differences in the reconstructed mechanical axes between the bowed and the non-bowed group after conventional TKR (176.2° (sd 3.4) vs 179.3° (sd 2.1), p < 0.001).

For patients with significant femoral bowing, the reconstructed mechanical axes were significantly closer to normal in the CAS group than in the conventional group (179.2° (sd 1.9) vs 176.2° (sd 3.4), p < 0.001). Femoral bowing resulted in inaccuracy when a conventional technique was used. CAS-TKR provides an effective method of restoring the mechanical axis in the presence of significant femoral bowing.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 615 - 619
1 May 2007
Smith R Wood PLR

A consecutive series of 23 patients (25 ankles) with osteoarthritis of the ankle and severe varus or valgus deformity were treated by open arthrodesis using compression screws. Primary union was achieved in 24 ankles one required further surgery to obtain a solid fusion. The high level of satisfaction in this group of patients reinforces the view that open arthrodesis, as opposed to ankle replacement or arthroscopic arthrodesis, continues to be the treatment of choice when there is severe varus or valgus deformity associated with the arthritis.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 964 - 969
1 Sep 2024
Wang YC Song JJ Li TT Yang D Lv ZB Wang ZY Zhang ZM Luo Y

Aims. To propose a new method for evaluating paediatric radial neck fractures and improve the accuracy of fracture angulation measurement, particularly in younger children, and thereby facilitate planning treatment in this population. Methods. Clinical data of 117 children with radial neck fractures in our hospital from August 2014 to March 2023 were collected. A total of 50 children (26 males, 24 females, mean age 7.6 years (2 to 13)) met the inclusion criteria and were analyzed. Cases were excluded for the following reasons: Judet grade I and Judet grade IVb (> 85° angulation) classification; poor radiograph image quality; incomplete clinical information; sagittal plane angulation; severe displacement of the ulna fracture; and Monteggia fractures. For each patient, standard elbow anteroposterior (AP) view radiographs and corresponding CT images were acquired. On radiographs, Angle P (complementary to the angle between the long axis of the radial head and the line perpendicular to the physis), Angle S (complementary to the angle between the long axis of the radial head and the midline through the proximal radial shaft), and Angle U (between the long axis of the radial head and the straight line from the distal tip of the capitellum to the coronoid process) were identified as candidates approximating the true coronal plane angulation of radial neck fractures. On the coronal plane of the CT scan, the angulation of radial neck fractures (CTa) was measured and served as the reference standard for measurement. Inter- and intraobserver reliabilities were assessed by Kappa statistics and intraclass correlation coefficient (ICC). Results. Angle U showed the strongest correlation with CTa (p < 0.001). In the analysis of inter- and intraobserver reliability, Kappa values were significantly higher for Angles S and U compared with Angle P. ICC values were excellent among the three groups. Conclusion. Angle U on AP view was the best substitute for CTa when evaluating radial neck fractures in children. Further studies are required to validate this method. Cite this article: Bone Joint J 2024;106-B(9):964–969


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 294 - 298
1 Feb 2021
Hadeed MM Prakash H Yarboro SR Weiss DB

Aims. The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. Methods. A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals. Results. The spiral and oblique fracture patterns withstood simulated weight-bearing with minimal displacement. The multifragmented model had early implant failure with breaking of the distal locking screws. The spiral fracture model shortened by a mean of 0.3 mm (SD 0.2), and developed a mean coronal angulation of 2.0° (SD 1.9°) and a mean sagittal angulation of 1.2° (SD 1.1°). On average, 88% of the shortening, 74% of the change in coronal alignment, and 75% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. The oblique fracture model shortened by a mean of 0.2 mm (SD 0.1) and developed a mean coronal angulation of 2.4° (SD 1.6°) and a mean sagittal angulation of 2.6° (SD 1.4°). On average, 44% of the shortening, 39% of the change in coronal alignment, and 79% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. Conclusion. For spiral and oblique fracture patterns, simulated weight-bearing resulted in a clinically acceptable degree of displacement. Most displacement occurred early in the test period, and the rate of displacement decreased over time. Based on this model, we offer evidence that early weight-bearing appears safe for well reduced oblique and spiral fractures, but not in multifragmented patterns that have poor bone contact. Cite this article: Bone Joint J 2021;103-B(2):294–298